TWISTED SUPER YANGIANS OF TYPE AIIl AND THEIR REPRESENTATIONS

KANG LU

ABSTRACT. We study the super analogue of the Molev-Ragoucy reflection algebras, which we call twisted
super Yangians of type AIIl, and classify their finite-dimensional irreducible representations. These super-

algebras are coideal subalgebras of the super Yangian Y(gl and are associated with symmetric pairs of

m\n)

type AIII in Cartan’s classification. We establish the Schur-Weyl type duality between degenerate affine
Hecke algebras of type BC and twisted super Yangians.
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1. INTRODUCTION

Reflection algebras, introduced by Sklyanin in his seminal paper [SkI88], are pivotal in constructing the
commutative Bethe subalgebra and ensuring integrability of quantum integrable systems with boundary
conditions. These algebras, inspired by Cherednik’s scattering theory [Che84] for factorized particles on
the half-line, form the foundation for various studies.

In [MRO2], Molev and Ragoucy studied a family of reflection algebras B, whose relations are described
in terms of reflection equation and a certain unitary condition, and classified their finite-dimensional
irreducible representations. These reflection algebras can also be called twisted Yangians of type AIIL
as they are coideal subalgebras of the Yangian Y(gl,,) and deformations of the fixed point subalgebra of
U(gl,,[x]) associated to symmetric pair of type AIII, see §3.2. The twisted Yangians depend on a sequence
€ = (1,69, -+ ,&yn), where g; = £1, and for different € the B might not be isomorphic.

These twisted Yangians were further investigated by Chen, Guay and Ma in [CGM14]. They related
the twisted Yangians (in R-matrix presentation) with another family of twisted Yangians introduced by
MacKay [Mac02] (in Drinfeld’s original presentation). A Drinfeld functor from the category of modules
over degenerate affine Hecke algebras of type BC (dAHA) to the category of modules over twisted Yangians
were constructed. It turns out the Drinfeld functor is an equivalence of categories under certain condi-
tions, similar to the usual Schur-Weyl duality. Moreover, the Drinfeld functor sends a finite-dimensional
irreducible module over dAHA to either zero space or a finite-dimensional irreducible module over twisted
Yangians.

In the present article, we shall study the supersymmetric generalization of B., that are twisted super
Yangians of type AIIL. The twisted super Yangians Bs. are coideal subalgebras of the super Yangian
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H(g[f;lln) that depends on sequences of parity sequence s = (51,82, , Sm+n) and € = (1,2, , Em+n)s
where s;,6; = £1 for 1 < ¢ < m + n. The new sequence s corresponds to the Dynkin diagram we choose
min- When s satisfies s; = 1 for 1 < ¢ < m and

s; = —1 otherwise, we call s the standard parity sequence. The standard parity sequence corresponds to

for the associated general linear Lie superalgebra gl

the standard Borel subalgebra of gl,,,,,.

The twisted super Yangians appear previously (under the name reflection superalgebras) in the study
of analytical and nested algebraic Bethe ansatz [RS07, BR09] for quantum integrable models (open spin
chains) with symmetry described by twisted super Yangians. For the case of the standard parity sequence
s and a specific €, they computed the highest weight of twisted super Yangian for a highest weight vector
of super Yangians. They are also recently studied in [Ket23|, where some partial results of this paper
were obtained, and in [BK23|, where a double version of twisted super Yangian is introduced and studied.
Note that in [Ket23, BK23], the author deals with twisted super Yangians associated with the standard
parity sequence s and a specific € while ours are arbitrary?.

Our primary objective is to obtain analogous results to [MR02, CGM14] with arbitrary s and €. We use
similar strategy as in [MR02, CGM14]. Under our setting, s and € are both arbitrary. The calculations
become more complicated than that in [MR02, CGM14]. We need to put extra effort to correctly insert
the necessary sign factors s and e.

Finite-dimensional irreducible representations of super Yangians were classified by Zhang [Zha95,Zha96]
for the standard parity sequence. A complete and concrete description of criteria for an irreducible
d(gl7,,)-module (for arbitrary s) being finite-dimensional is not available, though such a criteria can be
obtained recursively using the odd reflections [Mol22, Lu22]. Consequently, we only have classification
of finite-dimensional irreducible B -modules for the cases (1) arbitrary e when n = 0,1 and (2) the
standard parity sequence s when the occurrence of i such that ¢; # €;41 is at most 1.

There are also twisted Yangians of types Al and AIT introduced by Olshanski [O1s92] and of types BCD
introduced by Guay and Regelskis [GR16] via R-matrix presentation. Another family of twisted Yangians
associated to general symmetric pairs were introduced by MacKay [Mac02] in terms of Drinfeld’s J-
symbols. More recently, together with Wang and Zhang, we introduced another family of twisted Yangians
for symmetric pairs of split types in Drinfeld’s new presentation, [LWZ23, LWZ24]. The isomorphism
between these families remains unproven, offering an interesting avenue for future research. Results for
certain types like type Al and AIII can be found in [LWZ23, CGM14], respectively. It is an interesting
question to find Drinfeld’s original and new presentations for twisted super Yangians of type AIII.

This article is organized in the following fashion. Section 2 revisits basic properties of the super Yangian
%(glfnln). Section 3 delves into twisted super Yangians and their properties. Section 4 explores highest
weight representation theory and tensor product structures for twisted super Yangians. Section 5 classifies
finite-dimensional irreducible representations for rank 1, while Section 6 extends this classification to
higher ranks in key cases. Finally, Section 7 establishes a Schur-Weyl type duality between degenerate

affine Hecke algebras of type BC and twisted super Yangians.
Acknowledgments. The author is partially supported by Weigiang Wang’s NSF grant DMS-2001351.

2. SUPER YANGIAN
sec:supersgangimn

2.1. General linear Lie superalgebras. Throughout the paper, we work over C. In this section, we
recall the basics of the general linear Lie superalgebra g[fn|n, see e.g. [CW12] for more detail.

A wector superspace W = W5 @ W7 is a Zs-graded vector space. We call elements of W5 even and
elements of Wy odd. We write |w| € {0,1} for the parity of a homogeneous element w € W. Set (—1)0 = 1

and (—1)! = —1.

LFor the classical limit, the treatment is the same for twisted super Yangians associated to different s and €, but the
representations theory does rely on s and €.
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Fix m,n € Zzo and set » = m + n. Denote by S, the set of all sequences s = (s1,52,...,55x)
where s; € {1} and 1 occurs exactly m times. Elements of Smin are called parity sequences. The parity
sequence of the form sg = (1,...,1,—1,...,—1) is the standard parity sequence.

Fix a parity sequence s € S,,|,, and define |i| € Zy for 1 <i < > by s; = (=1)ll,

S

s

The Lie superalgebra gl ij

is generated by elements ef., 1 < 7,57 < s, with the supercommutator

relations
i|-+[5]) (| |+
s er) = Ojnes; — (—1)(IZI Dkl D(Silezj,

where the parity of efj is |i| + |j|. In the following, we shall drop the superscript s when there is no
confusion.

Denote by U(g[fnln) the universal enveloping superalgebra of g[fn|n. The superalgebra U(gl
Hopf superalgebra with the coproduct given by A(z) =1® x4+ 2z ® 1 for all z € g[fmn.

The Cartan subalgebra b of g[fn‘n is spanned by e;;, 1 <@ < s Let ¢, 1 < i < 5, be a basis of h* (the
dual space of h) such that €;(ej;) = 6;;. There is a bilinear form (, ) on h* given by (e;,€;) = s;0;;. The

root system ® is a subset of h* given by

S

m‘n) is a

®:={c—¢ | 1<ij<xandi#j}

We call a root €; — € even (resp. odd) if |i| = |j| (resp. |i| # |j]).
Set a; :=€; — €;41 for 1 < i < 3. Denote by

P:= @ Zei, Q:= @ Lo, Qzo:= EB Lo

1<i<se 1<i<se 1<i<sr

the weight lattice, the root lattice, and the cone of positive roots, respectively. Define a partial ordering >
onbh*: p>vif p—ve Q.

A module M over a superalgebra o is a vector superspace M with a homomorphism of superalgebras
o — End(M). A gl7, -module is a module over U(gly,,). However, we shall not distinguish modules
which only differ by a parity.

For a g[fn|n—module M, define the weight subspace of weight p by

: ight-
(M), :={veM]|ezw=ples)v, 1 <i< x}. SQiuwelght SFQaﬁﬁI

For a g[fn‘n—module M such that (M), = 0 unless p € Q, we say that M is Q-graded.
For a gl?

mln
vector v € M a singular vector of weight p if v satisfies

-module M, we call a vector v € M singular if e;;u = 0 for 1 < i < j < 2. We call a nonzero

eiv = p(ei)v, ejrv =0,

for 1 <i<sxand1<j<k< s Anonzero vector v € (M), is a highest (resp. lowest) weight vector
of M if (M), =0 unless p — v € Qg (resp. v — u € Q>¢). Clearly, a highest weight vector is singular
while a lowest weight vector v satisfies ej;v = 0 for 1 <1 < j < s

Denote by L(u) the irreducible gl?  -module generated by a singular vector of weight u.

mln
Let V := C™" be the vector superspace with a basis v;, 1 < i < , such that |v;| = |i|. Let
E;j € End(V) be the linear operators such that E;jv, = d;,v;. The map py : g[fn‘n — End(V), e — Ejj

defines a g[fn‘n—module structure on V. As a g[fn‘n—module, V is isomorphic to L(e;). The vector v; has
weight €;. The highest weight vector is v; and the lowest weight vector is v,m4+n. We call it the vector

representation of g[fnln.

sec rtt
2.2. Super Yangians. Fix a parity sequence s € Sy, and recall the definition of super Yangian Ys :=
Y(gl?,,,) from [Naz91].

mln
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Definition 2.1. The super Yangian Y4 is the Zy-graded unital associative algebra over C with generators
{tg) | 1<i,7 <, r =1} and the defining relations are given by

(—1) R+l

[ti(w), tra(v)] = (g (w)tis (v) — tr; (V)ta (w)). °q: comm-seri e

u—v
where
(k). (0)
ty(u) =Y tiju", g =y,
k=0

)

and the generators tg have parities |i| + |7].

The super Yangian Ys has the RTT presentation as follows. Define the rational R-matrix R(u) €
End(V®V) by R(u) =1— P/u, where P € End(V ® V) is the super flip operator defined by

»
P = Z SjEij & Eﬂ

i,j=1
The rational R-matrix satisfies the quantum Yang-Baxter equation
e ang-ba
Ria(u — v)Ri3(u) Ras(v) = Raz(v)Riz(u)Ria(u — ). 9 yangTbagpey
Define the operator T'(u) € Ys[[u™1]] ® End(V),
x
T(u) = Z (=)l (u) @ Eyj.
ij=1

Then defining relations (2.2) can be written as
R(u — )Ty () Ta(v) = To(0)T1 () R(u — v) € Ys[[u~1]] © End(VE2). 9L
The super Yangian Y is a Hopf superalgebra with the coproduct

A t(u) itik(u) b (u), °q [5RY
k=1

and the antipode S : T'(u) — T~ (u).
Define the series

o
(k) —k
tgj(u) = thg u
k=0

by
T_l(u) _ Z (_1)|i\\j\+\j\t;j(u) ® Ejj. eq:inve{f%gl
ij=1
Then

»

- o o ° eq:T’-e essi
i) =8+ > (~1DF Nt (Wt g, (w) ot ), ST TP
k=1

ai, - ap—1=1
where t7;(u) = t;j(u) — ;5. In particular, by taking the coefficient of u™", for r > 1, one obtains

r

t;g‘r) _ Z(_l)k Z Z t@(;)t[(lﬁ)z o tt(zzli)lj’ eq:T-expression—{:é)'ngl

k=1 al,,ap—1=17r1++rp=r

where r; for 1 < i < k are positive integers.
By (2.4), one has

Ty (—w)R(u + 0)To(v) = To(v) R(u + )T} (—u), ca: ;BT
Ti(u)R(u+ v) Ty (—v) = Ty (—v) R(u + v)T1 (u), '
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and

(1 = )ty (), thy(v)] = (= 1)+l 41518 (%. S tis(u)tly(v) — 60> t;S(v)tsj(u)). °& b)
s=1

s=1
For z € C there exists an isomorphism of Hopf superalgebras,

T Ys = Ys, tij(u) = tij(u — 2). ed &—uiﬁl

The universal enveloping superalgebra U(g[mln) is a Hopf subalgebra of Y, via the embedding e;; +—
sitgj). The left inverse of this embedding is the evaluation homomorphism ©3  :49s — U(g[m‘n) given by
Tompn © Lij (W) = 055 + sieiju” . e evaluatio&-.riigl

The evaluation homomorphism is a superalgebra homomorphism but not a Hopf superalgebra homo-
min module M, it is naturally a Ys-module obtained by pulling back M through the
evaluation homomorphism 7,,,,. We denote the corresponding Ys-module by the same letter M and call

morphism. For any gl?

it an evaluation module.

The following standard PBW-type theorem for super Yangian Y4 is known.
thm:PBW

Theorem 2.2 ([Gow07, Penl6]). Given any total ordering on the elements tg’) for 1 < 4,5 < » and
p € Z~q, the ordered monomials in these elements, containing no second or higher order powers of the
odd generators, form a basis of the super Yangian Ys.

Besides the antipode S, we also have the following anti-automorphisms of Y defined by
t:Ys = Ys, tij(u) = (~D)AIFEE (),
n :Hs%‘js, tij(u)Htij(fu).

Then the anti-automorphisms S, ¢, and n of Y5 pairwise commute, see e.g. [Naz20, Proposition 1.5]. Let
() be the anti-automorphism of Y4 given by

Q=Soton,  Qtu) = (—)HIIHIIY (—y). GAL)

2.3. Highest weight representations. We first recall the results about the highest weight representa-
tions for Y from [Zha96].

Definition 2.3. A representation L of Ys is called highest £s-weight if there exists a nonzero vector £ € L
such that L is generated by & and & satisfies

()e =0, Isi<is eq:highest-
ti(u)€ = Ai(w)¢, 1<i< %, 6554&

where \j(u) € 1+ u'C[[u™!]]. The vector & is called a highest {s-weight vector of L and the tuple
A(u) = (Ni(u))1<i<s is the highest €s-weight of L.

Let A(u) = (Ni(u))1<i<x be a s-tuple as above. Then there exists a unique, up to isomorphism,
irreducible highest weight representation L(A(u)) with the highest weight A(u). Any finite-dimensional
irreducible representation of Y5 is isomorphic to L(A(u)) for some A(u). The criterion for L(A(u)) being

finite-dimensional was classified in [Zha96] when s is the standard parity sequence.
thm:zhang

Theorem 2.4 ([Zha96]). If s is the standard parity sequence, then the irreducible Ygs-module L(A(u)) is
finite-dimensional if and only if there exist monic polynomials P;(u), 1 <i < s, such that
Ai(u)  Pi(u+s;) Am(u)  Pp(u)
Nigt(w) — Pi(w) 7 Appa(u)  Pu(u)’
and deg P,,, = deg P,,.

1<i< s andi+#m,
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A criterion for an arbitrary parity sequence s can be recursively deduced from Theorem 2.4 via the
odd reflections of super Yangian, see [Mol22, Lu22]. However, a compact description of such a criterion
for an arbitrary parity sequence s is not available.

Regard U(g[mln) as a subalgebra of Y, then we have tl(-il)
weight to an £g-weight via the map

@B = b*, Au) — ©(A(w) such that  @w(A(w))(ex) = sidi1, VBFRE)

= s;e;;. In particular, one assigns a g[m|n

where \; 1 is the coefficients of u™tin A (u).
Given a Ys-module L, consider it as a gl},,-module and its g}, -weight subspaces (M), see (2.1).
lem:wt-change

Lemma 2.5. We have

tE;)(Mh‘ C (M)ptei—e; tgg'r)(M)u C (M) ptei—e;

for 1 <4, <, and r € Z~y.
Proof. By (2.2) and (2.10), we have
illil+li . :1st- -
Dty ()] = (=) ITHEIRHTR (5, 4 () — St (), °q:1st-node 7y,

1) 7

(15, thy ()] = (=) TR (6, 547 () — 63t (). °q:1st-nodg L)

1y
Note that tl(jl-) is identified with s;e;;, then the lemma follows from the above equations by a direct
computation. ]

Thus, we have the following corollary of Theorem 2.2 and Lemma 2.5.

Corollary 2.6. If L is a Ys-module of highest {s-weight A(u), then L has a g[fnln—weight subspace de-
composition. Moreover, its highest {s-weight vector has weight w(X(u)) and the other weight vectors have
weights that are strictly smaller (with respect to > defined in §2.1) than w(A(u)). O

Let Y& be the left ideal of Y5 generated by all the coefficients of tij(u) with 1 < i < j < 2. We write
X =X'if X — X' € YF. Clearly, if £ is a highest £s-weight vector of Y5 and X = X’ then X¢ = X'¢€.
prop:t’-l-weight
Proposition 2.7 ([RS07,BR09]). If £ is a highest {s-weight vector of highest {s-weight A(u) in a repre-
sentation L of Ys, then

tij(u)§ =0,
ti(u)§ = Nj(u)é,
for certain N,(u) € 1+ u'C[[u~Y]]. (The formal series N,(u) will be determined later.)

I<i<y eq:t’-anni
e 1)

NN
//\ /\

1

Proof. Let 1 <i < j < 2. By (2.10), for any 1 < k < 7, we have

(_1)Ii\ljl+\i\|k|+\j\lkl[tkj(u),tgk(v)}i_ 1 Zt;s(v)tsj(u)'

u—v

—7=1 and take the coefficients of u~'v™? and u~2v~P, we have

prop:k(ii.‘]l-gl)I
- —t/»(~p+1) t(l) Z t t(l) prop:k(iibfﬁl

ij z
s=j+1

Expanding (u —v)~!as Y 02 v u
L : 1 _
(1) 0] = ),

il 4+ j 2
(1)l ||k|+|3||k|[t,(€j),t;(,f)]

We prove t (p)§ =0 for all 1 <7 < j < » by induction on p.
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) _

The base case is clear because it is immediate from (2.8) that tij —t,; Suppose now that t;gp )5 = 0.
It follows from (2.19) and the induction hypothesis that

/ . prop:kill-
tz(sp) ()f—O Jj<s< o (1%.]21:3I
Note that ¢ is an eigenvector tg- ) and tg ]), we have
(2) y(Phe _ /(p) (1) prop:kill-
[tjj 7%’ £ =0, 75” i §=0. &52&

. . . . . < J(p+) e
Setting k£ = j in (2.20) and applying (2.20) to &, we immediately obtain tijp ¢ = 0 from (2.21) and
(2.22). Thus by induction, we have t(r)f =0forall 1 <i<j<sandr € Zsg.

Since g[ I, Can be regarded as a subalgebra of Ys, the Ys-module L is hence a glI?  -module and

mn
has the weight decomposition. The vector £ has the weight w(A). By Theorem 2.2 and Lemma 2.5,
(L)w(n) is of dimension 1 and all other weights appearing in L are smaller than w(X). It follows from
Lemma 2.5 that #};(u) preserves (L)g(x) and hence preserves {. Therefore, ¢ (u)§ = A(u)¢ for some
M(u) € 14+ uLC[[u™1]). O
By the same strategy, we have the following lemma.

lem:tia-kill
Lemma 2.8. Let & be a highest (g weight vector. If 1 <i < j < xandl < c < a < x then we have
tia(u)te;(v)€ = 0. Similarly, if 1 <i < 3 and 1 < ¢ < a < s, then tig(u)t,;(v)§ = 0.

Proof. First we consider the case when a > ¢. Then by (2.10), we have

tia (1), £ (0)]€ = 0. carmorsurey 3%}

» ey
If ¢ < j, it is clear from Proposition 2.7 that tm(u)t’cj(v)f =0. If ¢ > j,thena >c¢c > j > i,
tej(V)tia(u)€ = 0. It follows from (2.23) that tiq(u)t;;(v) = 0.
Then we consider the case when a = ¢. If a < 7, then tia(u)t;j (v)¢ = 0 by Proposition 2.7. If a > j, by
(2.10), we have

Sa(t — ) [tia(u), th( th

Note that the right hand side is independent of a. By settlng a = j and using Proposition 2.7, we find

that
Z tie(u =0.

Hence we always have [t;,(u),t! (v)]€ = 0. Then again by Proposition 2.7,

7a]

tia (W)t (V)€ = [tia(w), th; (v)]€ + (=1 IHDWHDE (0}t (w)€ = 0,

ast<j<a
Then we prove the second statement. If ¢ < 4, then the statement follows from Proposition 2.7. Now
suppose that ¢ > i. By (2.10) and the first statement, we have
bl
(_1)|i||a\+\i\|0\+\a||0| (= v)[tia(u), t;(v)]E = — Zt/ck(v)tka(u)f = 0.
k=1
Since a > ¢ > i, we have t;(v)tio(u)§ = 0. It follows from the above equation that t;,(u)t.;(v)§ = 0,
completing the proof. O

The following proposition was proved in [RS07, BR09] for the standard parity sequence. The strategy
in [RS07,BR09] does not work in general for arbitrary parity sequences.
Let pr, = Y 7 1 8q for 1 < k < 5. By convention, p,41 = 0.
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prop:highest-weight-inver
Proposition 2.9. Let £ be a highest (-weight vector of highest (-weight X(u). Suppose N,(u) is defined
as in (2.18), then

) = — T Meluten) eq:1a-pri
M) = Ai(u+ pigr) 220 (w4 pria) &2

Proof. For a given parity sequence s = (51,82, "+ ,55) € Syn, set § = (55, 8,,-1, "+, 82,51). To distin-
guish generating series for super Yangians of different parity sequences, we shall write t7;(u), t;(u), etc.
It is also convenient to identify an operator szzl(_l)\iﬂﬂﬂﬂa” ® Eij in Ys[[u™!)] ® End(V) with the
matrix (aij);szl. Then the extra sign ensures that the product of two matrices can still be calculated in
the usual way.

Recall the Gauss decomposition of super Yangian Ys, see [Gow07, Penl6]. Let Ef;(u), F%;(u), DF;(u),

where 1 <7< j < s and 1 < k < ¢, be defined by the Gauss decomposition,

t5(u) = Df(u) + > Fi(u 2 (u),

k<i

t5;(u) = DF (w)Ef;(w) + Y Fii(w)DE(w)ER; (u),

k<i

% (u) = F:(w)Df (u) + ) F3(u)Df (u)ER; (w).
k<i
Similarly, one can define Ef;(u), F5;(u), Df;,(u).
Let #%(u) correspond to t;;(u) in Ys. Define similarly Ef(u), F75(u), Dy (u), for 1 <i < j < s and
1<k < by

£33 (u) = D (w) ™' + ) _Ef(u ~IF (w),

k>i
£ (u) = ES()D3 ()™ + 7 B () D ()RS (w),
k>j
£(u) = D ()~ 'Fls() + Y B () D) i )
k>j

Then
EfS(u) = > VB (B, () B (),
ed:appiey W

Fii(u) = Yo CUFL L WF () B (w).

1= <t1<-<ip=jJ

There exists an isomorphism between Y5 and Y, given by the map
g o eq:identifi
et iu) = CDIIES ), 1< <o TR

where the signs |i| and |j| are determined by the parity sequence s.
We shall identify #};(u) with ¢72,,_; ., ;(u) with certain signs as in (2.26). With this identification,
when s = 3, one has

D3 E35(D3) ™ Es,(D3)!
T%(u) = | (D3)"'F3,  (D3)~' + E55(D3)~'F5 E$,(D3)~! + Ef3(D5)'F5, ;
(D$)"FS, (D$)"'Fs, + ES3(DS)"FS, (D)~ + ES,(DS)"FS, + ES5(DS) 1S,

cf. [LPRS19, equaltion (B.4)]. Here we drop the spectral parameter v and the signs for brevity.
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Under the identification above, one proves similarly to [LPRS19, Theorem 4.2] for the super Yangian
Ys that

B i jer1—i(u) = (—1)“””*”‘E§§(u + pj); 1<i<j<o,
FSimiperi—y(w) = (=) HEIFES (w o p)), 1<i<j <
1 = D3 (u+ pa) eq:cartan-currenf-
DS _i(u)= a , 1<qk§r% 9 5%
AL Ty g § e ey 2%

Now we are ready to prove Proposition 2.9.
It is well known that for a highest £s-weight vector v of highest weight A(u), we have

eq: :
ES (v =0,  t5(u)v =D (u)v = \i(u)v, FEBE)
see e.g. [Lu22, Section 2.5]. By Gauss decomposition,
t5(u) = D (w) + > _ F.(u)D} (w)ER; (w),
k<i
it follows from (2.25) and (2.28) that ¢7;(u)v = Df(u)v. Therefore, by (2.27) and (2.28) that

TR PN ) PR N MR Sy QLRS00
’ Ai(u+ pia) |, 20 Ae(w + pryr)

completing the proof of Proposition 2.9. g

3. TWISTED SUPER YANGIAN OF TYPE AIII . .
sec:twisted-super-yangians

3.1. Definition. Fix a sequence of integers € = (1,9, - ,&,), where ¢; € {£1}. Denote by G¢ the
diagonal s X ¢ (super)matrix

G* = diag(e1,e2,+* ,&5). F?lﬁl
The matrix G¢ satisfies the reflection equation
R(u — v)GER(u + v)GS = GSR(u + v)GER(u — v). eqrretlegty

Definition 3.1 ([MR02,RS07,BR09]). The twisted super Yangian of type AIIl Bs ¢ is a Zo-graded unital

associative algebra over C with generators {bg) | 1 <i,5 < 5, r =1} and defining relations given by

— 1 allg el k] +[5] K|
iy (), b)) = T

(brj (w)bir (v) — brj(v)bir(u))

u—v
(—1)llldlHlIkL+ 151K

+ - <5kj Z bia(w)bai(v) — dir Z bka(”)ba?(’ﬂi?})mm_seriff.?}jl
a=1 a=1

- ﬁ&] ( Z bia (u)bal (U) - Z bia (v)bal(u)>
a=1 a=1

and the unitary condition
x

3" bia(u)baj (—u) = 85, eqiunitary=series)
a=1

where
k) — 0
bij(w) = Dbk, b =6,
k=0

(r)

and the generators b’ have the parity |i| + [j|.
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Define the operator B(u) € Bse[[u™!]] ® End(V),

V4 . .
B(u) = Z (_1)\i\|j|+\j\sz(u) ® Eyj. eq matrix notat1€§.5t5|
ij=1

Then the defining relations of Bs¢ can also be written as the reflection equation
R(u — v) By () R(u + v) Ba(v) = Ba(v)R(u + v) By (u) R(u — v SO 8onerators &

and
B(u)B(—u) = 1. oq:unitey

We shall also use the algebra B s,e defined in the same way as Bg . but with the unitary condition (3.4)
omitted. Since there are no other types in this paper, we shall simply call Bs. and %875 twisted super
Yangian and extended twisted super Yangian, respectively.

The extended twisted super Yangian (reflection superalgebra) previously appeared in [RS07, BR09] on
the study of Bethe ansatz for open spin chains with diagonal boundary conditions. Certain properties on
B s,e has been obtained in [RS07,BR09]. We shall reproduce some of them.

Proposition 3.2. In the extended twisted super Yangian §3,57 the product B(u)B(—u) is a scalar matriz
:bb-
B(u)B(~u) = f(u)L, SR
where f(u) is a series in u=2 whose coefficients are central in %375.

Proof. The proof is parallel to that of [MR02, Proposition 2.1]. Multiplying both sides of (3.3) by u? — v?
and set v = —u, one has

Ve

(1)l 3l 1E (%. > bia(w)bar(v) — 5a i bka(v)baj(u)>
a=1 a=1

B B (3.9)
= 5ij < Z bka (u)bal(v) - Z bka (U)bal(u)> :
a=1 a=1

By taking suitable indices ¢, j, k, [, one obtains that
B(u)B(—u) = B(—u)B(u)

and the matrix is indeed a scalar matrix. Therefore, (3.8) holds and in particular f(u) is a series in u ™2

as B(u)B(—u) is even.
Multiplying both side of (3.6) by Ba(—v) from the right, we have

R(u—v)Bi(u)R(u+v)f(v) = Ba2(v)R(u+ v)Bi(u)R(u— v)Ba(—v)

=" By(v)Ba(—v)R(u — v)Bi(u)R(u + v)
= [(W)R(u—v)Bi(u)R(u + v)
Therefore, the coefficients of f(v) are central in B se- O

Let #i(u) € 1+ u~'C[[u""]] be such that #(u)f(—u) = 1. There is an automorphism My, defined by

My Boe = Boe,  Bu) — h(u)B(u). 310
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sec:properties
3.2. Basic properties of twisted super Yangian. In this section, we collect some basic properties of
the twisted super Yangian Bge.
thm:embedding
Proposition 3.3. The mapping

0 B(u) = T(uW)GT~" (—u) RN
defines an embedding which identify the twisted Yangian Bse as a subalgebra of the super Yangian Y.

Proof. The proof is essentially the same as that of [MR02, Theorem 3.1]. We first check that ¢ in-
duces a superalgebra homomorphism which we again denote by ¢ and then prove that this superalgebra
homomorphism ¢ is injective.

For brevity, we simply write G for G*€.

Set S(u) = T'(u)GT~!(—u), then we immediately have

S(u)S(—u) = T(uw)GTH (—u)T(—u)GT H(u) = 1

which verifies the unitary condition (3.7).
On the other hand, we also have

R(u — )81 (w)R(u +v)S3(v) = R(u—v)Ty()Gi T} (—u)R(u + 0)Ty(v) GaTy  (—v)
2 R(u— )Ty ()1 To(0) R(u + )T} (~u)Ga Ty (~v)

= R(u — v)T1 (u)Ta(v)Gy R(u + v)Go T (—u) Ty (—v)

D Ty ()T (w) R(u — 0)G1 R(u + 0)Go T (—u) Ty (—v)

) 1y ()T (w) GaR(u + v)G1LR(u — 0) T (—u) Ty} (—v)

) 1y (0)Ty (w) GaR(u + v) Gy Ty (—0) T (—w) R(u — v)

= To(v)GoT1(w)R(u + v)Ty (=) G T (—u) R(u — v)

D 1y (0) G Ty (—0) R(u + v) Ty (u) Gy T (—u) R(u — v)

Sy(v)R(u + v)S1 (u)R(u — v).

Therefore, S(u) also satisfies the reflection equation (3.6).

Then we show that ¢ is injective. Introduce the filtration on Y5 defined by deg, tg) = r, see [Gow07],
and a similar filtration on B by setting deg; bg) = r. Note that for the matrix elements of S(u), we
have

sij(u) = €055 + Z sg)u_r = Zeatm(u)tgj(—u). eq:embed(-f,)i%l
a=1

r>0

It follows from (2.8) that the degree of sz(-;) is at most r. Therefore ¢ preserves the filtration and hence
induces a homomorphism of the associated graded superalgebras

p:gr1Bse — griYs.

Denote by Zg) the image of tg;) in the r-th component of gr,Ys.

It is clear from (2.2) that gr;Ys is supercommutative, and moreover it follows from [Gow07, Theorem

1] that these elements t_g) are algebraically independent generators (in the super sense). It is also clear

that gr{Bs ¢ is supercommutative. Denote by 51(';) the image of bg) in the r-th component of gr;Bs .. Due
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to the unitary condition (3.4), the elements

7(2p—1 .
bz(jp )’ if i = g5, eq: ind-genera(,f]iélil
l—)l(?p)’ if &q 75 €5,

for 1 < 4,7 < 3 and p € Z+, generate the superalgebra griBs .. By (3.12) and (2.8), we find that

- _ : ded- t
250 o (—1) e )BT 4o cargradedEenerBl 4
Here --- stands for a linear combination of monomials in t_ffl? with p < r for various 1 < a,b <
therefore, the elements in (3.13) are algebraically independent, completing the proof. O
We immediately have the following PBW-type theorem for the twisted super Yangian Bg ..
cor :PBW
Corollary 3.4. Given any total ordering on the elements
2p—1 .
bgjp ), if e = €5,
(29) (3.15)
bz] ’ Zf &q 7é €j7

for 1 <i,j < 3¢ and p € Z~g, the ordered monomials in these elements, containing no second or higher
order powers of the odd generators, form a basis of the twisted super Yangian B .

Thanks to Proposition 3.3, the twisted super Yangian is identified with a subalgebra of Y4 by identifying
bij(u) with s;;(u). As the twisted super Yangians of types Al and AII, B, is also a coideal subalgebra
of Ys.

prop:coproduct

Proposition 3.5. The subalgebra Bs ¢ is a left coideal subalgebra in Ys,

Z o (1 ) & b (1) (— 1) e lalel) eq:b-coprordy,

ac—

Proof. Note that A is a superalgebra homomorphism. One finds

»

Aty () = D thy () @ iy () (—1) 10D i),

a=1
Then the statement follows from a straightforward computation. O
Let 6 be the involution of gl? min sending e;; to €;e;e;; and (g[m|n) the fixed point Lie subalgebra
of gl* In under §. Note that # depends on the diagonal matrix G* which we shall not write explicitly.

Then (gl7,,, (g[m|n) ) is a (super)symmetric pair of type AIIL, cf. [She22]. Write gl?
(+1)-eigenspace decomposition with respect to §. In particular,

min = = £+ p as the
t= (g[$n|n)9 = g[m1|n1 S2) g[mg\nga
where
=#{i|s;=e;=1,1<1i < »}, =#{i| —si=¢; =
:#{z]si:—sizl,l i < s}, ngz#{z\si:&:i—

Clearly, a basis of £ is given by all e;; for 1 <4, j < > and ¢; = ¢, while a basis of £ is given by all ¢;; for
1<4,j < »and¢g; # €.
Extend the involution 6 on g[? In tO 6 on gl®, in [x] by sending

0(g2") = 0(g)(—=)",
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forg e gl?, and k € Z>¢. Let gl® 9 be the fixed point subalgebra of glI?  [x] under 6. Then we have

at2, 21" = (¢ Cl2?) D © 2Cla?),

There is also another filtration of Ys defined by setting deg, tg) =r — 1. It is well known [Gow07]
that the associated graded superalgebra gr,Ys is the universal enveloping superalgebra U(gl,,,[z]) and
the correspondence is given by

U(g[m|n[$]) — gry Us, eijxr = SJZH)- eq%i%&

m|n

Regard Bs e as a subalgebra of Y5 via Proposition 3.3. Then we have the filtration on B, given by

deg, bl(-;) =1 — 1. Let gryBs ¢ be the associated graded superalgebra.
; prop:limit
Proposition 3.6. The twisted super Yangian Bse is a deformation of U(gly,, [« z]?),

gro BS e — U(g[m|n[ ]A>

Proof. For r € Zxg, let l_)g-ﬂ) be the image of bgﬂ) in the r-th component of gry B, .. It follows from
the proof of Proposition 3.3 that under the isomorphism (3.17),

si((—1)" e +ej)ea" = (1) e + 59'){5;) = 51(}")‘

Note that U(gly, [z ]) (resp. gry Bse) is generated by ((—1)""le;+e;)e; 2"t (resp. l_)g)), for1 <i,j <
and r € Z~, the proposition follows. O
4. HIGHEST WEIGHT REPRESENTATIONS

sec:.reps

In this section, we discuss the highest representations of the twisted super Yangian B .

4.1. Highest weight representations. Similar to [MR02], we define the highest weight representation
of B, e as follows.

Definition 4.1. A representation V of Bs ¢ is called highest {s c-weight if there exists a nonzero vector
n €V such that V is generated by n and 7 satisfies

bij(u)n =0, 1<i<j< o, eq:highe@fﬁ
bii(u)n = pi(u)n, 1<i< s, :

where p;(u) € g + u'C[[u™t]]. The vector n is called a highest {sc-weight vector of V and the tuple
p(u) = (1i(w))i<i<s is the highest Us c-weight of V.
eg:1-dim
Example 4.2. For any v € C, there exists a one-dimensional module C, := Cn, generated by a highest
s e-weight vector 7, such that
giu+ 7y
bij(w)ny = 5ij;j777' [
We have the following standard statements.
By the relations (3.3), we have

b5 bra(w)] = (=) IR (o, - 25 (85 bis () = Suabgy (w)).
In particular, we have L
[Sﬂz‘bgil)/Q bri(w)] = Opibir(uw) — Sibrj(u). eq.b11-we1§£5t5|

Therefore, the operators s;;b; / 2 are pairwise commuting.
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We say that a Bgc-module V' has a g[fn|n—weight subspace decomposition if it possesses a common
(1)

eigenspace decomposition for the commuting operators b;;”,

weight w = (wq,...,w,) if

1 < i < ». We say that a vector v € V has

1
isisibg)v =wyv, 1<1i<
Denote by (V),, the weight subspace of V' with weight w.
Note that under the identification (3.12), we have

bgll) = 2€itl(il) = 287;61'61'1'.
Therefore, the definition is compatible with (2.15) if we consider a Ys-module as a B -module by re-
striction. For a highest /s c-weight p(u), we define a gl®  -weight w(p(u)), similar to (2.15), associated

mln
to it by the rule

() (ei) = ysicipi, s

where 11;1 is the coefficient of u~! in the series pi(w). Then a highest £4 .-weight vector of gl
w(p(u)).

s
mln

-weight

lem:wt-changeb

Lemma 4.3. We have
bg)(v)w - (V)wﬁﬁeja
for1<4,5 <3, and r € Z~y.
Proof. The lemma follows from (4.2) by a direct computation. O
Thus, we have the following corollary of Corollary 3.4 and Lemma 4.3.

cor:wt-changeb
Corollary 4.4. If V is a Bse-module of highest {s¢-weight p(u), then V has a g[;‘n-weight subspace
decomposition. Moreover, its highest U c-weight vector has weight w(p(u)) and the other weight vectors
have weights that are strictly smaller (with respect to > defined in §2.1) than w(pu(u)). O

Let V' be a representation of Bs .. Set
VO:{UGV ‘ bij(u)n:O, 1<i<j<%}.
lem:nontrivial
Lemma 4.5. If V is a finite-dimensional representation of Bs e, then V° is nontrivial.

Proof. Since the operators siaibgil ) /2 are pairwise commuting and hence have at least a common eigenvector
71# 0in V. Suppose V° = 0, then there exists an infinite sequence of nonzero vectors in V,

= (r1) ~ (r2)3(r1) ~

U biZijil;l T

where i < ji and ri > 0 for all k € Z~q. It follows from Lemma 4.3 and Corollary 4.4 that the above
vectors have different g[zl‘n—weights. Therefore, they must be linearly independent and hence we obtain

a contradiction as V is finite-dimensional, completing the proof. O

Throughout the paper, for X, X’ € Bs ., we shall write X = X’ if X — X’ belongs to the left ideal of

Bs.e generated by the coefficients of b;;(u) for 1 < i < j < s
lem:invariant

Lemma 4.6. The space V° is invariant under the operators by.(u), for 1 <r < .

Proof. We prove b;j(u)byr(v) =0 for 1 <i < j < 2 and 1 <7 < s by a reverse induction on 7.
For the base case r = s, it is immediate from (3.3) that b;;(u)b,..(v) = 0 for i < j < 2. Similarly, for
1 < », we obtain
(—1)lelllHlalk|+ 111K

bi%(u)b%%(?}) = uto biu(u)b%%(v)a

which implies b;,,(u)b,...(u) = 0. Therefore, the base case is established.
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Now let r < ». For i < j and ¢ < k, it follows from (3.3) that
Z bia (1) ba lem: com&ﬁzlj)l

Note that the right hand side of (4.4) is independent of j. Therefore, for j and j’ such that i < j,j’, we
have

55bij(u)bjr(v) o

lem:commun-—
sjbij(u)bjk(v) = sj/bz-j/(u)bj/k(v). &5%|
In the following, we always assume that ¢ < j. We have four cases.
(1) The case @ < r and j # r. It is straightforward from (3.3) that b;;(u)b,.(v) = 0.
(2) The case i <r and j =r. By (4.4) and (4.5), we also have
Sy
Srbiy (W) bpr (V) = ——bjyr Zsa,

u-+v

which gives b, (u)b.-(v) = 0.
(3) The case r < i < j. Using (3.3) for [b,.(v), bij(u)], we have

bij(w)byr(v) = 02 i 02 (Z bia(w)baj(v) Z bia(v)ba; (u)>
a=j a=j
45) s &
= by (0) = by ()b () Y s
a=j

Thus, bi;j(u)by(v) = 0 as byj(u)bj;(v) = bij(v)b;j(u) = 0 by induction hypothesis.
(4) The case r =i < j. By (3.3), we have

1 1 &
571 ()b (0) = = (brj (Wb (v) = brj (0)brr (W) = —— Z: bra(v)ba;(u)
Note that by (4.5), sabre(v)baj(u) = s;brj(v)bj;(u) = 0 for j < a < s by induction hypothesis.
We obtain that " b s . 1
— — Sy r em: commun-,
—————byj(u)byy ——b,j (V)b (u) = 0. .6)
(Wb () + by (0)ber (1) = 0 o]
Interchanging u and v, we also have

b ()b () " (0)b () = 0. temscompp

The system of equations (4.6) and (4.7) has only zero solution, therefore we conclude that

brj(u)brr(v) = 0.

The proof now is complete. 0]
lem:commute

Lemma 4.7. All the operators by,.(u), 1 <1 < 3, on V° commute.

Proof. For any 1 < r < s, it follows from (3.3) that

(
( u + U> ()] = u?: er(u, v) e com&l-_g?'

where
(,0) =3 (Bra(Wbar (v) — bra(0)bar (). rems oY)
a=r+1

Again by (3.3), for a > r, we have

x

bra(W)bar(v) = = (Bua(u)bor (0) = baa(0)bor (1)) + = (32 bre(Wbier (v) = 3 bucl®)bea(w)).

c=a
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Switching v and v and taking the difference, we obtain
bra(u)bar(v)_ bra(v)bar(u)
2 (o (), oy ()] + [baa (1) baa ()] + 121, 0) + a1, 0) )

u—+v

Summing over a, we obtain

(w4 v — pra1)tr(u,v) = praq[brr(w), byr (V)] + Z sa<[baa(u), baa (V)] + ta(u, U)jem:com{nﬁbgl

a=r+1

Using (4.8) and (4.10), one easily shows that [b,.(u), b..(v)] = 0 and ¢,(u,v) = 0 by a reverse induction
on r. Therefore, if i < r, it follows from (3.3) that

! ([brr(u)a b (V)] + ¢ (u, v)) =0.

i), b ()] = —
Hence we proved that all the operators by.(u), 1 < r < 3, on V° commute. O

Now we are ready to prove the main result of this subsection.

Theorem 4.8. Every finite-dimensional irreducible representation V' of the twisted super Yangian Bg ¢
is a highest {g c-weight representation. Moreover, V contains a unique (up to proportionality) highest
ls.c-weight vector.

Proof. By Lemma 4.5, V° is nontrivial. Hence it follows from Lemmas 4.6, 4.7 that V° contains a common
eigenvector n # 0 for all operators b,.(u), 1 < r < 3. Therefore, the vector n satisfies (4.1) for some
formal series p;(u).

Consider the submodule Bs¢n in V, as V is irreducible, we conclude that Bs.n coincides with V.
The uniqueness of 1 (up to proportionality) follows from Corollary 3.4 and the weight subspaces of the
operators Si6ib§i1 ) /2 used in the proof of Lemma 4.5. U

4.2. Verma modules. For any s-tuple pu(u) = (u;(w))1<i<s, where pi(u) € g; + u~C[[u~!]], denote
by M (p(u)) the quotient of B, by the left ideal generated by all coefficients of the series b;j(u), for
1 <i<j <o and b(u) — pi(u), for 1 < @ < 2. We call M(p(u)) the Verma module with highest
ls e-weight p(u).

The Verma module M (p(u)) may be trivial due to nontrivial relations. If M (u(w)) is nontrivial, then
denote by V(p(u)) the unique irreducible quotient. Clearly, any irreducible highest £ c-weight module of
Bse with highest £5 c-weight p(u) is isomorphic to V(p(u)).

In the rest of this subsection, we discuss the sufficient and necessary condition for M (u(u)) being
nontrivial.

Before stating and proving the theorem, we prepare a few lemmas that will be useful. For each

1 <4 <o, set
x

Bi(u,v) = Z bia()bgi(v). eq(éfgﬁj]

a=1

Lemma 4.9. For 1 <i < s, if u+v = p;y1, then we have

D) + S sulbaau)bi(4) — b))
a=1+1
= bip1,i41(u)big1,iq1(v) + " i » Z Sa(baa(1)bit1,i+1(V) = baa(V)bit1,i41(u)).

a=1+2
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Proof. For a > i, it follows from (3.3) that

Sa Sa
bia(u)bei(v) = — (baa(u)b”(v) — baa(v)bu(u)) + o (ﬁz(u, v) — Balv, u))
Summing over a, we have
U+ v—p; 1 -
T P B, 0) = ba(wbis(v) = = D safa(v,0)
a=i+1 eq: 1em-nontriv(if]l-21)|
1 < '
— > Sa(baa(Wbii(v) — baa (v)bii(u)).
a=i+1

Interchanging v and v and taking the difference, we obtain

U+ UV — pit1 1 = eqy lem-nontrivial-

uiﬂ(ﬁi(u,v) — Bi(v,u)) = o ;1 Sq (Ba(u, v) — Ba(v, ujl), Céf]IS%I

where we also used that b;;(u)bi;(v) = bii(v)bii(u), see Lemma 4.7. Note that (.. (u,v) = B,(v,u), one
easily shows by a reverse induction on ¢ that §;(u,v) = f5;(v, u) using (4.13).
Applying (4.12) for ¢ and i 4+ 1 and using 3;(u,v) = Bi(v,u), one has
u+v—p;
A AR (Bi(u,v) = Biy1(u,v))

U+ v
Vel

2 sa(Baa(w)bis(v) = baa(egpéntpontrivip) 3

a=i+1

1

u—v

bii(w) bis (V) — byt i1 (w)big1i41(v) +

»

Z Sa(baa(w)bit1,i+1(v) = baa(v)big1,i11(w)).

a=i+2

1

u—v

Now the statement follows immediately if v + v = p;11. U

It is convenient to set
»

bi(u) = (20— pa)bis(w) + 3 Sabaa(w), 1< < 5. cqrdef by

a=1i+1
lem:b-in-t

Lemma 4.10. Regard B as a subalgebra of Ys as in Proposition 3.3. Then we have

bii(u) = (265w — £ipig1 + @i ) i (W)t (—u), (4.16)
where w; = Z;{:Z gjsj and A= B if A = B for any highest {s-weight vector §.
Proof. For 1 < i < », set

piu) = Z tia(Wte(—u),  pi(u) = Ztéa(—U)tm‘(U)-

By (2.10) and Proposition 2.7, for a > i, we have

tialW)thi(—u) & 34 (Wilw) = pa(w)),  [tis(w), th(—w)] ~ St (i(w) — pi(w)). “F AT
Therefore, we obtain
Wi(u) ~ ti(u)th(—u) + f: ;—Z(%(u) — pa(u)), 1<i< “iB%)
Similarly, one has o
i) % (- wt(w) + 3 2 (i) — da(w)), 1< <o gali)
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By Proposition 2.7, we have t;;(u)t,,(—u) ~ t,,(—u)t;i(u) for all 1 < i < s. Also note that it follows from
(4.17) that ¢, (u) = @, (u). By a reverse induction and using (4.18), (4.19), one proves that 1;(u) ~ @;(u)
for all 1 < ¢ < . Hence, we have

2u — piv1) @i (u) ~ 2uty;(u)ts (—u) — Sapa(u), 1 <1< . eq:inlem-b- Zl_%l
+1)§ i £

a=i+1
On the other hand, it follows from (3.12) and (4.17) that

€aSa

2u

x
. eq:inlem-b-ft-
biw) = eitu(wlis(—u) + Y oot (i) = po(w), 1<i<m % (1 %)
a=i+1
Solving bj;(u) in terms of ¢;;(u)t};(—u) from the system of equations (4.20) and (4.21), it is not hard to
see by a brute force computation that
»
(2u — pit1)bii(u) + Z Sabaa(u) = (2£iu —&ipit1 + wi+1)tii(u)t§i(—u). O
a=i+1

Now we are ready to prove the main theorem of this subsection.

thmnontrivial
Theorem 4.11. The Verma module M (p(w)) is nontrivial if and only if
p (W) (—u) = 1, tlun:nontriv('lZﬁJQ—zlgl
and for 1 < i < , the following conditions are satisfied
fii (W) fii(—u + piv1) = fitr (W) fit1(—u + pis1), camROnIEYE)
where

e

i) = (2u = pi i) + Y saptalu). Y

a=i+1

Proof. We first show that conditions (4.22) and (4.23) are necessary. By the unitary condition (3.4), we
have

D boa(u)bas(—u) = 1.
a=1

Then (4.22) follows from the above equation applied to the highest weight vector of V(u(u)). Applying
Lemma 4.5 to the highest weight vector of V(u(u)), we get

»

> sa(pa(u)pi(v) — pa(v)mi(u))

a=i+1

palu)ps(v) + ——

Ve

Z Sa (Ma(u)MHl(U) - Ma(U)#i+1(U))7

a=1+2

1
U —v

= pit1 (W) it (v) +

where u + v = p;y1. It is not hard to see that the above equation is equivalent to conditions (4.23).

Conversely, suppose the conditions (4.22) and (4.23) are satisfied. We shall show that there exists a
highest £s-weight vector £ of highest £s-weight A(u) such that € is of highest ¢ .-weight p(u). This proves
that the Verma module M (p(u)) is non-trivial.

First, observe from Lemma 2.8 and (3.12) that b;j(u){ =0 for 1 <i < j < s

We construct \;j(u) € 1+ v 'C[[u~!]] inductively as follows. By (4.22), there exists A, (u) € 1+
u~'C[[u~!]] such that

foe(u) = €5 05:(w) /X5 (—u).
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Suppose we already have A;(u) for i < j < s. Define

Ai(u) = (28i11u — Ei1piv2 + Wiv2) i(w)Aiga ()
i (285t — €ipiv1 + @it1) i1 (W) Nip1(—u + pir1)

Note that if ¢; = €;4.1, then we have
28i41U — Ei41Pi42 + Wita = 26U — €iPi+1 + Wit1; eqfﬁ%ﬁl
if ¢, = —€441, then we have
26,410 — €i41Pit2 + Wita = 26i(—U + pit1) — €iPit1 + Wit1- eq:éf%%l

Therefore, one easily checks that the condition (4.23) ensures that A;(u)A;(—u + p;y+1) = 1. Hence there
exists \j(u) € 1 +u 'C[[u]] such that A;(u) = N\;(u)/Ni(—u + pit1).
With our choice of A(u), we have

fii(u) _ (2850 — €ipir1 + @ir1)Ni (W) Aip1(—u + pig1)

fivi(u) (28410 — €ip1pire + @iv2) Nip1 (W) Ai(—u + pit1)

and pi;.(u) = €, A (u)/A.(—u). By Propositions 2.7, 2.9 and Lemma 4.10, one verifies that £ is indeed of
highest /s c-weight pe(u). O

4.3. Tensor product of representations. Recall from Proposition 3.5 that B is a left coideal sub-
algebra in Y5. Given a Ys-module L and a Bg-module V, then L ® V' is a Bg -module given by the
coproduct formula (3.16) in Proposition 3.5.

Let L = L(A(u)) be a highest fs-weight module over Y5 with a highest {s-weight vector . Let
V =V (u(u)) be a highest (5 c-weight module over B . with a highest ¢ c-weight vector 1. We end this
section by showing that £ @ 7 is a highest ¢, .-weight vector and calculating its highest /s .-weight.

Again we shall use the convenient notation A ~ B if A¢ = B¢.
lem:sum-T-

Lemma 4.12. For 1 <1< a < », we have

a

(2u — pist)tia(W)te;(—u) + Y Sctea(u)toe(—u) & satii(u)ti;(—u).

c=i+1
Proof. By (4.17), one obtains
a—1
(2u — piy1)tia(w)ty;(—u)+ Z Sctea()tae(—u)
c=1+1
S a
~ 22 (20— i) (9i(w) = palu) + D selgelt) = pa(w))
c=i+1
S a
~ 28 (20— pir)pi(w) = (20— post)pa(w) + Y sepelw))
c=i+1
s
~ 22 (2t () () = 2utaa (W)t (—0)),
where the last equality follows from (4.20). Now the lemma follows. O

prop:tensor-product
Proposition 4.13. We have b;jj(u)(§ ®n) =0, 1 <i<j <, and

bii(u)(€ © 1) = Ni(WX (W) (E@n),  1<i<,
where N,(u) and fi;(u) are defined in (2.24) and (4.24), respectively.
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Proof. Tt is easily seen from Lemma 2.8 and (3.16) that b;;(u)(§ ® n) = 0.
Again we write A ~ B if A(§ ®n) = B(§®n). It follows from Lemma 2.8 that
A(bii(u)) ~ Z (tia(u)t:u‘(_u) ® baa(u)) (E@mn).

Therefore,

Ai(u) ~ (2u— pi1) th ) @ baa(u Z saZtac 1) @ bee(u)

a=1+1 c=a

4 a

= Z ((2u - pi-l—l)tia(u)t:n(_u) + Z Sctca(u)t;c(_u)> @ baa(u)
a=1 c=1+1
e
R (2u — piy1)ti(w)ty;(—u) @ bii(u) + Z Satii(u)ti;(—u) @ baa(u)
a=1+1
— bt © (20— g bi) + Y abaa(w)) = b)) © D).
a=i+1
Here we applied Lemma 4.12 in the third equality. Now the statement follows. ]

eg:tensor-1
Example 4.14. Recall the one dimensional B -module C, = Cn, from Example 4.2 for v € C. Let
L = L(X(u)) be a highest ¢s-weight module over Y5 with a highest £s-weight vector {. Then by Proposition

4.13 we have

)¢ ) = I TALIN (g ),

cf. Lemma 4.10. O

5. CLASSIFICATIONS IN RANK 1
sec:rankl

In this section, we study finite-dimensional representations of Bs . when s = 2.

5.1. Non-super case. In this section, we investigate the finite-dimensional irreducible representations
of twisted super Yangian of the small rank case »» = 2. Note that the case s = (1,1) has already been
studied in [MR02, Propositions 4.4, 4.5] via identifying B with (Olshanski’s) twisted Yangians Y(sp,)
and Y(so02) of types ATl and AIL
prop:iff-even
Proposition 5.1 ([MR02]). Suppose s = (1,1).
(1) Ife = (1,1), then the Bg c-module V (p(w)) is finite-dimensional if and only if there exists a monic
polynomial P(u) such that P(—u + 2) = P(u) and
) Plut1)
fio(u)  Pu)
(2) Ife =(1,-1), then the Bsc-module V(p(u)) is finite-dimensional if and only if there exist v € C
and a monic polynomial P(u) such that P(—u + 2) = P(u), P(y) # 0, and
) P+l y-u
falw) P ytu-T
In this case, the pair (P(u),7) is unique.

prop:con-even

Proposition 5.2 ([MR02]). Suppose = (1,1).

(1) If e = (1,1), then any finite-dimensional irreducible Bgc-module V(pu(u)) is isomorphic to the
restriction of a Y(gly)-module L, where L is some finite-dimensional irreducible Y(gly)-module.
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(2) If e = (1,-1), then any finite-dimensional irreducible Bg ¢-module V (p(w)) is isomorphic to L &
C,, where L is some finite-dimensional irreducible Y(gly)-module and C, is some one-dimensional
B e-module defined in Example 4.2 with v € C.

5.2. Super case. In the rest of this section, we establish super analogous results to the previous propo-

sitions when s = (1,—1) or (—1,1). Our main results in this subsection are the following.
prop:rankl

Proposition 5.3. If s is such that s1 # s2, then the Bgs-module V(p(u)) is finite-dimensional if and
only if there exists a monic polynomial P(u) such that
/}l(u) =16 (_1)degP P(“’) ]
iz (u) P(—u+ s2)
Proof. The <= part follows from Theorem 2.4 and Theorem 6.1 below as V(u(u)) can be obtained as a
quotient of the restriction of a finite-dimensional irreducible Ys-module.
To show the = part, note that due to the condition (4.23), such a polynomial P(u) exists provided

that fi1(u)/fi2(u) or alternatively pi(u)/ua(u) is an expansion of a rational function in u at u = oo.
We will work on

Tij (u) = 5i5ij + Z aﬁl(»;)ufr = bij (u + 82/2)
r>0
and the case s = (1, —1) since the general case s = (—1,1) is similar by inserting the signs at suitable
positions or using certain isomorphisms.
Using (3.3), we have

[b21(u), ba2(v)] = u;_lv(bﬂ(“)bﬂ(v) — bo1(v)b22(u)) + uj_v(bzl(v)bn(u) + bz (v)ba1 (u)),
which gives
uj}j:}_j}_lbﬂ (U)le (U) = b21(u)b22 (1})— - _1|_ Ub21 (y)bll(u)

= (b2 (v)baa() — baa (w)bza (v)).

Substituting v — u — 1/2, v — v — 1/2 and dividing both sides by (u+ v)/(u 4+ v — 1), we obtain
1
v+u

T22(v)w21 (1) =291 (u)T22(V) — (z21(v)z11(U) + 221 (U)T22(V))

CUTET

e (a (0)eaa ) — 21 (W72 (0)) + 5 (o1 (W) () — o1 (0)22 1))
Taking the coefficients of «*v~2 and v=2, we have
wipahy = aby (@l — 20y + ) — o) (@) — f), &5
o () = e ()@ — 208 + o) - o) (@11(w) - w2(w). "I
Similarly, taking the coefficients of v=*v™3 and v=3, we have
whyaly = —2eawiy ) + 2l (af]) — 283 +ay)
— a5y (2 — ) + ab @ + 2T — all), &5
w8301 (u) = — 2690wy (u) + w21 (u) (x5)) — 2253 + 28y))

— 2 (@11 (w) — 2 (w)) + o) (urns (u) + uaan(u) — wm(w). VI

Denote by 1 the highest /s .-weight vector of V' (pu(u)). Define the series \;j(u) by
Ai(w) =D Npu",  i=1,2,

r=0
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where \;. € C satisfies ;Ug)n = A\;rn. In particular, Ay = ¢;.

(2r)

(1) The case €1 = €3. We first prove that for r > 0, the vector x4, 'n is a linear combination of vectors
L, .03 (2r—1)

Lot T oy My 5T 1T
We prove it by induction on k. Setting k£ = 0 in (5.4) and noticing that acgi) = 0, we have
eq:ind-
(e1+ ea)aly = ) (2l + ) — ). )
Therefore, 252x§21)77 = (A1 + o1 — 82):(};11)77. Now suppose that
eq:ind-
$§21T)77 = clx(Ql)n +o At o 1:c§2f l)n 4 Fg.pfﬂl
for some ¢y, -+ ,cor—1 € C. Then applying (5.3) to ZL'gQ) (clxgll) -+ CQk_ll‘ng_l))n and using (5.6), we
find that :Eg;)(clxgl) + -+ CQT,lwg ))n is a linear combination of vectors xgll)n, 33521)17, e l'gr—i_l)’l’],
which is also a linear combination of vectors wgll)n, :ES)’U, . x§21r—1)77 by (5.6) and (5.7). Similarly, by
(5.3), :L‘éQ)xgl )17 is equal to —252xélr+ ) n plus a linear combination of vectors xél)n, a:g?i)n. Thus, the claim
is proved.
Let n, = xéﬁr_l)n for r € Zso. Since V(pu(u)) is finite-dimensional, there exists a minimal non-

negative integer k£ be the minimal nonnegative integer such that ng4; is a linear combination of the
vectors 11, - -+, Nk, o1
eq:pf-low=
Mkt1 = C1mi + -+« + CkM- 1P &21-83'
Then for any r > k, one proves similarly as in the proof of the above claim that
Nr = ar1M1 + -+ Qrkl

for some a,; € C, where 1 < i < k. Therefore, there exist series a;(u) € u'~?(1 + C[[uY]]), 1 <i <k, in
u~! such that

zo1(u)n = ar(u)m + ag(u)nz + - + ag(w)nk. eq:m(—f@e}]

To simplify the notation, we use the following shorthand notation for these scalars,
Ap = Agg — 2A91 + &2, A1 = Aoz — 2A92 + Ao,
Br = Aop — A1, Or = Mat1 + A2 g1 — A2y
By (5.3) and (5.9), we have

i wan () = Aoz (u)n — (A1) = Aa(u))m a:pE-oy}
= Aofar(u)ns + az(uyn + -+ ar(uhn) = () = Aa(w))m
On the other hand, by (5.2), we have

k
o> o)y zar oy zar (ot + o). “VPERETTS
r=1

Comparing the coefficients of 7, it follows that

Aa(u) = A (w) =) Bor—rax(u). eq:pf—i%)."ﬁ%l
k=1

Recall that (5.6) implies xg?

5w (u)y

= (—2e0u? + Ay )zor () + (u)\l(u) Fudo(u) — Ao(u) + %aoeg(xg(u) - Al(u))>m

ar () + (wha () + udow) — Mo(u) + Joer(halu) — Ma(w) ).

M=

= (*262u2 + Al)

r=1
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On the other hand, we have

k k
l‘g;) Z ar(u)nr = Z ar(u)xg?é)xgl?ul)n
r=1 r=1

k
1
=) ar(u)( = 2eatr1 + Manp + Sboc2Bar—1m + 927«71771)
r=1

Applying (5.8) to the above equality and comparing the coefficients of 7, for 1 < r < k, we obtain that
(—2e9u® + A1)ar(u) = (—2e2a,—1(u) + Ara,(u) — 2e9crap(u)),
which reduces to
ar—1(u) = u?a,(u) — crap(u). eq:pf—a.g{viélﬁl
Hence, for any 1 < r < k, we have a,(u) = P, (u)ag(u), where P, (u) is a polynomial in u of degree
2(k — r). Finally, taking the coefficients of 7; and using (5.13), we conclude that

1 1 :pf-loy-
(u — 500€2>)\1(u) + (u + 59052 — 1))\2(u) = P(u)ag(u), s4p 6@‘14&
where B (u) is a polynomial in u of degree 2k. Note that (5.12) and (5.13) imply
() — M (u) = Pu)ag(u), °4:PEOYS)
where P(u) is a polynomial in u of degree at most 2k—2. It follows from (5.14) and (5.15) that A;(w)/A2(u)
is an expansion of a rational function in u at u = oo, completing the proof for the case 1 = e5.
(2) The case €1 # e2. The proof for this case is very similar to that of the previous case. The

difference is that one needs to use :Egr)’l’] and :L‘g;)a:gf) instead of fngf_l)n and xg)ng_l), respectively, cf.

[Mol98, Proposition 6.1] as we have xéll) = 0 in this case. Then (5.15) is replaced with

(W 4 ha(u) — (W 4 )M (u) = P(uw)ag(u),

where - - - stand for two different linear polynomials in u and P(u) is a polynomial in u of degree 2k + 2.
Note that in this case B(u) in (5.14) is of degree at most 2k. We omit the detail for this case. O

5.3. Preparations. In this subsection, we prepare ingredients to establish super analogue of Proposition
5.2 and always assume that s = (s1, s2) satisfies s1 # sa.

We start with simple calculations for 2-dimensional evaluation modules. Let « and 6 be complex
numbers such that « + 6 # 0. Then the evaluation Ys-module L(«w,8) is two dimensional. Let vt be a

nonzero singular vector and set v~ = egqv ™.
lemn2

Lemma 5.4. We have the following explicit action,

U+ s1
ti(u)ot = TUJF, tia(u)o™ =0,
u— s16 51—
toa(u)o™ = vt tar(upet = ==,
u U
tll(u)vi — wvi’ tzl(u)vi = 07
— 51 — 516 6
tog(u)o™ = LT tia(u)v™ = M“?
u U
u(u — 51 — s16)
th(w)oT = vt tho(u)v™ =0,
11( ) (u_ s1 +810/)(U—81ﬁ) 12( )
U S1u —
Y +_ + t T =
92 (u)v u_s6" 2 (u)v (u— s1 +S1a)(u—81ﬁ)v 7
B u _ —s1(a +6)u
t'll(u)v =o', tig(u)v™ = "

U — 81+ S14 (u— 51+ s1a)(u— s16)
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u(u + s1a)
u—s1+ s10)(u— s16)

tho(u)v™ = ( v, thy(u)v™ = 0.

In particular, (u+ s1 — s1a)(u + s16)t;;(w)t),(—u) and (u + s1 — s1a)(u + s16)b;j(u) act on L(w,b)
polynomially in u.

Proof. The formulas follow from straightforward computation and the second statement follows from the
formulas. O

We call two Bg-modules Vi, Va are almost isomorphic if Vi is isomorphic to the module obtained
by pulling back Va2 through an automorphism of the form Jly,(,), see (3.10). In particular, the modules
V(p(u)) and V(v(u)) are almost isomorphic if and only if

fulu) _ ()
fliv1(u)  Dig1(u)’
Similarly, one can define almost isomorphic Ys-modules. Then the modules L(A(u)) and L(A(u)) are
almost isomorphic if and only if

1<t <o

Ai(w) 0 Ay(u)
Aig1(u)  Agpar(u)’
If V1, V5 are almost isomorphic, then we write V; >~ V5.
To understand the module structure of finite dimensional irreducible B . modules, it suffices to inves-
tigate these modules up to almost isomorphism.
We shall also need the dual modules. Let L be a finite-dimensional Ys-module. The dual L* of L is
the representation of Y4 on the dual vector space of L defined as follows:

(- w)(v) = (HMw@(y) v), yelds wel’, vel,
where  is defined in (2.13). Let w be another finite-dimensional Ys-module. Then we have (L @ W)* =

L*®@ W*. Let L be a finite-dimensional Ys-module of highest ¢s-weight generated by a highest ¢s-weight
vector (. Let ¢* € L* be the vector such that ¢*(¢) = 1 and (*(v) = 0 for all v € L with wt(v) # wt(().

cor dual weight
Corollary 5.5. Let V' be a finite-dimensional Ys-module of highest {s-weight generated by a highest
Us-weight vector v of €s-weight {(u) = (C,-(u))1<i<%. Then v* is of ls-weight ¢(u) = (¢i(u))1<i<s, where

G = H U—+Pk>

U+ﬂz+1 i +1 (—u+ pry1)

1<i< o

Note that
Vel

Z 1)lllel+lal+lallgl+lil+(al+i D(‘“'J"j')tja(u)tﬁm(—u)

z%: 1)l HJ\+IJ|t a(w)t (—u) = (_1)\illjl+ljlbﬁ(u)_

This means that the subalgebra Bsi of Ys is stable under Q2 and the restriction of €2 to Bs . yields an
anti-automorphism of B .

Let V be a finite-dimensional B, .-module. The dual V* of V' is the representation of B, ¢ on the dual
vector space of V* defined as follows:

(- w) (@) = (=D)FQ(y) - v), y €Bye, weV*, veV.
Clearly, the dual C} of the one-dimensional module C, is isomorphic to C,.
Let L be a finite-dimensional Ys-module and V' a finite-dimensional B, c-module, then it is straight-

forward to verify that
(LoV)y*=L"®@V*".
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Fix k € Z~¢. Let (w;,6;) be a pair of complex numbers for each 1 < i < k. Consider the following
tensor product of evaluation Ys-modules,

L(e,6)=L(a1,61)® - Lo, br).

lem:dual
Lemma 5.6. We have
Le,6)"~Lt1+1,01—1)® - QL(6r+ 1,0, —1)
as Ys-modules. Moreover, we have
(L(6,8)®Cy) ~L(61 + 1,01 — 1)@+ @ L6y + 1,0, — 1) ® C,
as Bg e-modules.
Proof. The lemma follows from Corollary 5.5 by a direct computation. O

Though we work with the case » = 2, the dual modules can be generalized to arbitrary s and s.

5.4. The case €1 = c3. Now we assume further that £; = 2. Suppose V(p(u)) is finite dimensional,
then by Proposition 5.3 we have

fi1 (u) deg P(u) P (u) -4
—= = (=1)%s —_—. 5.10)
) B A Tty 53)
We assume further that P(u) and P(—u — s1) are relatively prime. Otherwise, we may cancel common
factors and obtain a polynomial of smaller degree. Then P(—s1/2) # 0. Suppose
P(u) = (u+ s1a1)(u+ s1a2) - (u+ s1ag)

where | = deg P(u) and «; € C for 1 <i <. We have «; # 1/2.
Set k = |51 |. Introduce k pair of complex numbers (a;, 6;), where ; are defined as above while 6;
are defined as follows,

e if [ is even, then 6; = w; 1 — 1 for 1 < i < k;
e if [ is odd, then 6; = a4 — 1 for 1 <i<kandﬁk:f%.
Then we have

 P(w) o deg P(u) : (u+ s1a4)(u + 51 + s16;) P-f
P(-u—s1) - H (u — s16;)(u+ 51— s104) Fgﬁ%l

i=1
The only possible cancellation is when [ is odd, then

u+ S1 +81ﬁk =Uu— Slﬁk.

Note that we have
it 620, aitb;£0, aita; Al Gi+6; 41 notequally
forall 1 <i#j<k.
We consider the following tensor product of evaluation Ys-modules,

L(a,8) = L(w,61) ®--- ® L(ag, by).

For each 1 < i < k, L(w,,6;) is two dimensional. We set vf to be one of its nonzero singular vector and
v; = e21v; . Moreover, we assume that v;" are even. We also set vt =0 @---® v,j. We regard L(-a,8)
as a Bg c-module by restriction.

prop=
Proposition 5.7. Ife = (e1,2) satisfies €1 # €2, then the Bs c-module L(-a,8) is irreducible. Moreover,

the finite-dimensional irreducible Bg c-module V (p(w)) is almost isomorphic to L(-a,6).
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Proof. Tt follows from the proof of Theorem 4.11 that the vector v is a highest ¢4 c-weight vector. Suppose
the corresponding ¢ c-weight is v(u) = (v1(u), v2(u)). Then it follows from Proposition 2.9, Lemma 4.10,
and Lemma 5.4, , that

k

(u+ s1ai)(u+ sy + s16;) . u— s164

— 2% , — 2% et b
1UH ’LL + S1 — slaz)(u + Slﬁi) VQ(U) 2UH

Therefore, by (5.16) and (5. 17) we have

(u) ﬁ u+ s1a;)(u+ 51+ s16;) _ (—1)des P P(u) 1 (u)
(u) (u— s16;)(u+ s1 — s1@;) P(—u—s1) jz2(u)

Thus, it suffices to prove that the Bs -module L(-,8) is irreducible.
We claim that any vector n € L(-a,8) satisfying bia(u)n = 0 is proportional to v™. We prove the claim
by induction on k. The case k£ = 1 is obvious by Lemma 5.4. Then we assume that k& > 2. We write any

=1

such nonzero vector 1 in the following form,
1

U:Z(em)rvf@ﬁr:Uf®770+v1_®7717
r=0

where 19, m € L(wg,62) ® - -+ ® L(wg, 6r). We first prove that 71 = 0. Suppose 11 # 0. Then it follows
from Proposition 3.5 that

A(bra(u)) =tr1(w)tha(—u) ® bir(u) + t11 (w)thy(—u) ® bia(u)
— t12(w)tp(—1) ® ba1 (u) + tia(u)tyy(—u) @ baa(u).
Applying bi2(u) to n using this coproduct, it follows from bia(u)n = 0 that
(t11 (w)the(—u) @ bia(u)) (vy @ m) =0
by taking the coefficient of v; . Therefore, we have

B (u—s1+s1a1)(u—s1a1)
(u + S1 — 81&1)(’& + Slﬁl)

vy ®biz(u)m =0,

which implies that bja(u)n; = 0. By induction hypothesis, the vector n; must be proportional to vy ®
-+ ®v;. Then taking the coefficient of v in bia(u)n = 0, we have

U+ S1a1 +
_— b
u + 8161 © 012

Note that by (4.15) we have by (u) = (2u + s1)b11 (1) — s1b22(u) and bao(u) = 2ubsy(u). We deduce from
the above equation and Lemma 4.10 that

(w0 + t12(u)the (—u)vy @ baa(u)m + t11(u)tio(—u)vy @ bry(u)m

= LG

26281@1,(@1 + ﬁl) ﬁ u — 816
u+ s161

Lot
&
(u+s161)(2u+s1) -5 u+ s16; n

(u)no +

2e1s1u(er + 61)(u+ s1a1) ﬁ u+ s1aq)(u+s;+ slﬁi)er -
(u+s1—s1a1)(u+ s161)(2u+ s1) 7 (u+ 51— s10)(u+ s16;) L
Multiplying both sides by (2u + s1) [TF_, ((u+s1 — s1ai)(u+ s16;)), we have
k
0= (2u+ s1)(u+ s1a1)(u+ s — s1a1)v] @ H ((u + 51— s1a4)(u+ slﬁi))blg(u)no
i=2

k
+ 26281’11,(&/1 + ﬁl)(u + 851 — 81@1) H ((’LL + 81 — slai)(u — slﬁi))vf & m
i=2
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k
+ 2e151u(e1 + 61)(u+ s1a1) H ((u + s1a4)(u+ s+ slﬁi))vf @M.
=2
Due to Lemma 5.4, the operator Hf:g ((u+ s1 — s1@i)(u+ s16;))b12(u) acts on o polynomially in u.
(1) If @1 # 0, then setting u = —s1w1, we obtain

k
2310,1(@1 + ﬁl)(2@1 — 1) H(ﬁq + a; — 1)(@1 + ﬁi)’uf ®@n =0.
=2

Thus, by (5.18), we conclude that n; = 0.
(2) If @1 = 0, then setting u = sja1 — s1, we get

k
281(@1—1)(@1+ﬁ1 20/1—1 H@l—i—az—l (0,1—1—(1)1)1 ®m =0.
=2

Again by (5.18), we conclude that n; = 0.

Therefore, we must have bi2(u)ny = 0 which again by induction hypothesis that g is proportional to
Vg ® v,j. Thus the claim is proved.

Suppose now that M is a submodule of L(-a,86). Then M must contain a nonzero vector n such that
bi2(u)n = 0, see Lemma 4.5. The above argument thus shows that M contains the vector v*. It remains
to prove the cyclic span K = BgvT coincides with L(-w,8). By Lemma 5.6, the dual Bs-module
L(«w,6)* is almost isomorphic to the restriction of the Ys-module

L(ﬁl—i-l,@l —1)®--'®L(ﬁk+1,@k—1).

Moreover, the highest /5 vector ¢ of the module L(6; + 1,a; — 1) ~ L(«,6;)* can be identified with
the elements of L(a;,6;)* such that ¢f(v;") =1 and ¢}(v; ) = 0. Now, if the submodule K of L(-a,8) is
proper, then its annihilator

AmK :={we L(w,8)" |wn) =0 forall neK}

is a nonzero submodule of L(-w,6)* which does not contain the vector (f ® --- ® (. However, this
contradicts the claim proved in the first part of the proof because the strategy still works for the module
Lti1+1,61—1)® - ® L(6x + 1, ¢ — 1) with the previous assumptions on the complex numbers «;, 6;.
In this case, instead of using 21 — 1 # 0, we need the condition 261 + 1 £ 0. This is true if k > 2 as the
only possibility for ¢; = —% is when i = k. As for the initial case k = 1, it can be checked by a direct
computation. ]

Corollary 5.8. Suppose s = (s1,52) and € = (e1,€2) are such that s1 # so and e1 = 3.
(1) If p(u) satisfies (5.16), where P(u) and P(—u — s1) are relatively prime, then dim V (p(u)) = 2%,
_ | deg P(u)+1
where k = LfJ
(2) Given k € Zy, let w;,6;, 1 <i < k, be arbitrary complex numbers such that «; + 6; # 0 and set

k

H u+ s1ai)(u+ s1 + slﬁi)).
=1

Then the Bs -module obtained by the restriction of the Ys-module
L(e,6)=L(¢1,61)®- - ® L(ag, 6)

is trreducible if and only if the greatest common divisor of P(u) and P(—u — s1) (over C) is of
degree at most 1°.

2If the greatest common divisor is nontrivial, then it has to be u + 3.
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5.5. The case €1 # 2. Now we assume that £1 # £9. In this case, it is slightly different from the previous
case €1 = €2 as there is nontrivial one-dimensional module. We shall give detail for this part as well.
Suppose V(u(u)) is finite dimensional, then by Proposition 5.3 we have

/?1(”) _ (_1)degP(u)+1 P(u) ) P(§i5%|
fio(u) P(—u—s1)
We assume further that P(u) and P(—u — s1) are relatively prime. Otherwise, we may cancel common
factors and obtain a polynomial of smaller degree. Then P(—%) # 0. Suppose

P(u) = (u + s1a1)(u+ s162) - (u+ s1a)
where | = deg P(u) and «; € C for 1 <i < 1. We have a; # 3.
Set k = L%J Introduce £ pair of complex numbers (w;,6;), where «,; are defined as above while 6; are
defined as follows,

e if [ is odd, then 6; = a;11 — 1 for 1 <@ < k;
1

e if [ is even, then 6; = @y — 1 for 1 <i < k and 64 = —3.
We also set v = e151(a; — 1). Then we have
k
P(u) _ (_1)degp(u)+1 e1u + s1e1 + 7y H (u+ s1a;)(u+ s1+ s164) P—fa%%ﬁl
P(—u — s1) E9U + 7y (u— s164)(u+ s1 — s1a;) ’

i= 1
The only possible cancellation is when [ is even, then
u—+ 81 + s16 = u — s16y.
Note that we have .
notequ
@Z+ﬁ1750, ﬂ/l+ﬁ]§£0, ai+aj7$1, ﬁl-l-ﬁ]#l qfslg 1)
forall 1 <i#j<
We consider the tensor product of evaluation Yg-modules,
L(w,8) = L(a1,61) ® -+ ® L(a,bk)
and the tensor product
Vy(e,8)=L(w,6)®C,
Then V, (@, 8) is a Bs -module.
For each 1 < i < k, L(a;,6;) is two dimensional. We set v;" to be one of its nonzero singular vector

and v; = 621U;r . Moreover, we assume that v;r are even. Suppose C, is spanned by vg. We also set
vt =0l ®- @ @,
Proposition 5.9. Ife = (e1,¢2) satisfies €1 # €2, then the Bs c-module V. (-, 6 ) is irreducible. Moreover,

the finite-dimensional irreducible Bg c-module V(pu(u)) is almost isomorphic to V(@ ,8).

Proof. Tt follows from the proof of Theorem 4.11 that the vector v™ is a highest {5 c-weight vector. Suppose
the corresponding ¢, c-weight is v(u) = (v1(u), v2(u)). Then it follows from Proposition 2.9, Proposition
4.13, and Lemma 5.4, that

(u+ s1a4)(u+ s1+ s16;)
(u + 81 — slai)(u + Slﬂi)’

k
- - u— 16
U1 (u) = 2(e1u + s1€1 +7)H va(u) = 2(£2U+7)H !
i=1 i

ut s16;
Therefore, by (5.16) and (5.17), we have

. k
vi(u) 51u—|—8161+7H (u+ s1ai)(u + s1 + s16;)

Do(u) EoU + 7y paley (u— s16;)(u+ 81 — s104)

_ (cpydeepoe_ P )

P(—u—s1)  fi2(u)
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Thus, it suffices to prove that the B c-module V,(-a,8) is irreducible.

We claim that any vector n € V,(-&,8) satisfying bia(u)n = 0 is proportional to v*. We prove the
claim by induction on k. The case kK = 1 is prove by a direct computation using Lemma 5.4. Then we
assume that k > 2. We write any such nonzero vector n in the following form,

1
n=Y (e2))vi ®@np =vf ®no+ vy @,
r=0
where n9,m1 € L(wg2,62) ® -+ ® L(ak,ﬁk) ® C,. Similar to the proof of Proposition 5.7, the vector n;
must be proportional to v; Q- ® vk Then taklng the coefficient of v™ in bya(u)n = 0, we have

U+ S1a1 +
_ b
u+31ﬁ1 @ o

(w0 + t12(u)the (—u)vy @ baa(u)m + t11(u)tio(—u)vy @ bry(u)m

Note that by (4.15) we have by (u) = (2u 4 s1)b11 (1) — s1b22(u) and bgo(u) = 2ubga(u). We deduce from
the above equation and Lemma 4.10 that

U+ S1o +
=——= b
u + 81ﬁ1 @

k
281u(@1 + ﬁl)(&‘gu + ’}/) H u — 8164 o+

()i + (u 4+ 5161)(2u + s1)(u —7) -

k
i 281u(a1 + ﬁl)(u + 810,1)(6111 + s1€1 + 7)) H (u + slai)(u + 81+ 81ﬁi)vf— @ .

(u+ 51— s1e1)(u+ s161)(2u + s1)(u — Pl (u+ 81 — s1a;)(u+ s16;)

Multiplying both sides by (2u + s1)(u — ) H§:1 ((u+ s1— s1ai)(u+ s16;)), we have

k
0= (u—")(2u+s1)(u+sia1)(u+ s —sia)vy @ [ ((u+s1— s1a:)(u+ s16:))bra(u)mo
=2

k
+ 2s1u(equ + ¥) (@1 + 61)(u + 51 — s101) H ((u+s1— s1ai)(u— s16;))vf @m
i—2

k
+ 2sju(eru + s1e1 + ) (@1 + 61)(u + s1a1) H (u+ s1aq)(u+ s1 +81f}1~))vf®m.
=2

The rest of the proof is parallel to that of Proposition 5.7. Again, we need the condition that the only
possible cancellation in the right hand side of (5.20) is when [ is even, then u + s1 + $16, = v — s16. O

Corollary 5.10. Suppose s = (s1,s2) and € = (e1,€2) are such that sy # so and €1 # €3.
(1) If p(u) satisfies (5.19), where P(u) and P(—u — s1) are relatively prime, then dim V (u(u)) = 2%,
where k = Ldegfp(u)]

(2) Given k € Z~y, let v, i, 6;, 1 < i < k, be arbitrary complex numbers such that «; + 6; # 0 and
set

kol

P(u) = (u+s1 + &1y H u+ s1eq)(u+ s1+ s16;)).
=1
Then the Bg c-module

Vy(@,8) = L(w1,61) ® -+ @ L(ayg, b;) @ C,

is irreducible if and only if the greatest common divisor of P(u) and P(—u — s1) (over C) is of
degree at most 1.



30 KANG LU

6. CLASSIFICATION IN HIGHER RANKS L .
sec:classification

6.1. Sufficient conditions. We have the following sufficient condition for V' (u(u)) being finite-dimensional

for arbitrary s and arbitrary e.
thm:suff

Theorem 6.1. Suppose the highest (s c-weight p(u) satisfies
ﬂz(u) . (QEZ'U — &iPi+1 + Wiyl + 27))\i(u))\i+1(—u + pz‘+1) C1<i< %: in-proofé.(iljl

fivi(u) — (2eir1u = €ir1pive + Witz + 27) A1 (WAi(—u + pit1)
where v € C and A(u) = (A\i(u))i<i<x 15 an Ls-weight such that the Ys-module L(A(u)) is finite-

dimensional, then V (p(w)) is finite-dimensional.

Proof. Let A(u) = (A\i(u))1<i<s be an £g-weight such that the Ys-module L(A(u)) is finite-dimensional.
Suppose its highest £5-weight vector is . Consider B¢ as a subalgebra as in Proposition 3.3. Let C, be
the one-dimensional B, .-module spanned by 7, as in Example 4.2. Then L(A(u)) ® C, is a B -module,
see Example 4.14.

It follows from Proposition 4.13 and Example 4.14 that ¢ is a highest {5 c-weight with ¢, c-weight ¢(u)
such that

~Cz(u) _ (2eu — gipit1 + wit1 + 27)Ni(w) Aig1(—u + pit1) C1<i< e%c%:in—proof(),-.%%l
Giri(u) (28110 — gip1pite + @it + 29) Aig1 (WAi(—u + pis1)

Let M = Bs (€ ®@n). Then M is a highest /s -weight with £s c-weight {(u). Moreover [l is finite-

dimensional as a subspace of L(A(u)).

Note that the series f(u) = p,.(uv)/C(u) € 1 +u™tC[[u™t]] satisfies f(u)f(—u) = 1, see (4.22). Denote
by M ™ the Bse-module obtained by pulling back J through the automorphism defined by b;;(u) —
F(u)bij(u), for 1 < i,j,< ». Comparing (6.1) and (6.2), we see that () is a highest {5 c-weight with
ls e-weight p(u). Therefore V(p(w)) is finite-dimensional. O

It is very nature to expect that this is also the necessary condition for V'(p(u)) being finite-dimensional.
conj:malin

Conjecture 6.2. If the irreducible Bs c-module V (pu(u)) is finite-dimensional, then there exist v € C and
an ls-weight A(u) = (A\i(u))1<i<s such that

(1) the equations (6.1) hold, and

(2) the Ys-module L(A(u)) is finite-dimensional.

We call e simple if there exists at most one 1 < ¢ < ¢ such that e; # ¢;41. Conjecture 6.2 is proved
in [MRO2] for the case that € is simple and n = 0 (non-super case). Our main results in this section are
to show the conjecture for (1) the case when n = 0,1 and € is arbitrary; and (2) the case when s is the
standard parity sequence and € is simple. The main obstacle for the super case is that when s is not the
standard parity sequence, an explicit criterion for the Ys-module L(A(u)) being finite-dimensional is not

available, though a recursive criterion can be deduced from [Mol22, Lu22].
sec:reduct-lem

6.2. Reduction lemmas. In this subsection, we prepare reduction lemmas which allows us to construct
modules of twisted Yangians of lower ranks from modules of twisted Yangians of higher ranks.

For given s € S,,),, and €, define
s = (5275?””' 7574)7 €= (52a€37"' 75%)7 (6 3)
§:(317327"' aS%—1)7 §:(517527"' 16%—1)- '

Then we have twisted super Yangians Bsz and B, . To distinguish the underlying generating series, we
rewrite the series b;j(u) as bf;(u) in Bsz or Bge.
Let V' be a representation of the twisted super Yangian B, .. Define

V={oeV|buupw=0,1<i< . 8D
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lem:embedding-over
Lemma 6.3. The map Bsz — Bs e defined by bfj(u) — bit1,j+1(u), 1 < i,j < x, induces a representation
of Bsz on V.

Proof. This follows immediately from (3.3). O

Similarly, define
V={veV|b,luw=01<i< . G5,

lem:embedding-under

Lemma 6.4 ([BR09, Theorem 3.1]). The map Bge — Bse defined by

s
b(‘)( )_)blj(u+ )+5132 b%ﬂ<u+?%)
induces a representation of Bge on V. O

Fix 1 <a < . Let

S* = (Sa78a+1)? S[(Z] — (517 oty Sas 5a+1),
e = (5(175(1—{-1)7 E[a] = (517 T 76(116(14-1)'
For a Bg c-module V, define
V={neV|bjun=01<i<a,i<j< s, Vfé%ﬁ
b(un=0,a+1 <1< 1<k<l} '

B2reduction

Lemma 6.5. The map

4
2 (5 ] 2
BS*,E* — Bsﬁ-, b: ( ) — ba_;’_z 1 a+j 1<u + pa2+ > + ﬁ k_ga+2 Sk.bkk ('U, —|— paT—i_)

induces a representation of Bgx ¢« on V*. Moreover, under this map, we have

7 7 2 .
b (u) = bagi—1,a4i—1 (u + pa2+ ), 1=1,2.

Proof. The first statement follows from repeatedly applying Lemma 6.3 and Lemma 6.4. The second one

is obvious. O

Note that if V is finite-dimensional, then, by Lemma 4.5, none of V, V., and V* is trivial.

6.3. Classification 1. Let 0 € G,,. Given s and &, define

o (o

s = (80—1(1), cee ,80—1(%)), g = (60—1(1), cee ,60—1(%)).
Then we have the following natural isomorphisms, which by abuse of notation we denote by ¢ again,
0 Ys = Ysr, () = 150,000 (W), ST

and .

0 Bye = Byrars () = b0 (0): 13
Note that the latter one is the same as the one obtained by the restriction of the former.

Fix 1 < a < x, s, and e, we shall denote

g

s$:=S :(Sla"' ySa+1ySay " 73%)7

o
g = (517"' y€a+1s€ay 75%)7

@,
I

We shall identify the superalgebra Y5 with Y5 via the isomorphism (6.7), Bz ¢ with B via the isomor-
phism (6.8). When the underlying parity sequence and the sequence € are omitted, we implicitly assume
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that we pick our fixed choice of s and €. Then we can rephrase the conditions for a vector being a highest
ls-weight vector ¢ of {z-weight v(u) as follows,

ti(u) = vi(u)¢,  taa(u)C = var1(u)C,  tati,ar1(w)C = va(u)(,

ti,i—l—l(u)c = ta—l,a—i—l(u)C = ta+1,a(u)< = ta,a-l—?(u)C = 07 [ 7é a — 17 a,a+ 1.

Recall that L(A(u)) is the irreducible Ys-module of highest ¢s-weight A(u). Suppose L(A(u)) is finite-
dimensional and s, # s41, then it follows from [Zha95] that A, (u)/Aa+1(u) is a series in u™?

function expanded at u = co. Let
Aa(u) _ p(u) PSS

Aat1(u) g (u)
where p(u) and g (u) are relatively prime monic polynomials in u of the same degree. Set

deg g (u) = k. m&?&?ﬁl

as a rational

We also need the following
lem:ell-weight-ref

Lemma 6.6. Suppose L(A(u)) is finite-dimensional, then L(A(u)) contains a unique highest {z-weight
vector (up to proportionality) of v(u), where v(u) is given by the following rules,

(1) if sq = Sq+1, then v(u) = A(u);
(2) if sq # Sa+1, then vi(u) = N\i(u) fori# a,a+1 and

glu—s,)

q/(u) 5 Va—i—l(u) =

Vo(u) = Aga1(u —_
Proof. Case (1) is probably well known® and case (2) follows from the odd reflections of super Yangians,

see [Mol22, Lu22]. 0
thm:reflection

Theorem 6.7. If Conjecture 6.2 holds true for the case €, then it also holds true for the case € for any
o€,

Proof. 1t suffices to prove it for the case 0 = 0, = (a,a + 1) for any fix 1 < a < . We shall use the
notations introduced above. Since there is a single choice of s, we shall drop the dependence on s for the
notations. Also, to distinguish ¢, and 3, we use the notation ¢ and ¢ instead, respectively™.

Let p(u) be a highest ¢sz-weight. Suppose the irreducible Bg-module V(p(w)) is finite-dimensional.
Since Bg and B, are isomorphic, the Bs-module V(p(u)) is also a finite-dimensional irreducible Be-
module. Suppose the highest fe-weight of V(u(u)) is v(u), that is the Bgs-module V(p(u)) is almost
isomorphic to the Be-module V (v(u)) if we identify Bg with B.. By assumption, Conjecture 6.2 is true
for the case €, therefore, there exists a highest ¢-weight A(u) and v € C such that (6.1) are satisfied and
the Y-module L(A(u)) is finite-dimensional too. Note that the choice of A(u) may not be unique. We
shall pick a particular A(u) and sketch the proof (a complete proof will be added in a later version).

We pick A(u) such that the finite-dimensional irreducible Y(gly)-module L(Ay(u), Ag+1(u)) tensor with
the one-dimensional module C, restricts to an irreducible Ba-module, see Proposition 5.2. Then the
highest /-weight vector corresponds to the lowest (-weight vector in the Y(gly)-module L(Aq (), Agy1(u))
(since such a vector is unique as it is “highest weight” in terms of the usual weight) and hence this
vector corresponds to a highest ¢s-weight vector. However, the corresponding /-weight does not change
by Lemma 6.6. Hence to compute the £z-weight, one only needs to change € to €. O

31t essentially reduces to the case of Y(gl,) where all finite-dimensional irreducible modules are almost isomorphic to
tensor product of evaluation modules.
4Though s = §, the £s-weight and ¢z-weight have slightly different meaning.
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6.4. Classification 2.
thm:main-super-class

Theorem 6.8. Suppose s is the standard parity sequence and € is simple. The Bge module V(p(uw)) is
finite-dimensional if and only if there exists v € C and for any 1 < i < s such that

(1) if s; = Siy1, there exists a monic polynomial P;(u) satisfying Pi(u) = P;(—u + p;),

i (w) (26iu — €ipit1 + wir1 +7)Pi(u + s;) eq:gamm(agfllﬁ
flir1(u)  (28i41u — €it1pite + @ite +7) Pi(u)

Moreover, if €; # €i41, then P;(u) is not divisible by 2e;u — €;piy1 + wit1 + .
(2) if s; # sit1, there exists a monic polynomials P;(u) satisfying

i) i P
fliri(u) eii1(~1) Pi(—u+pit1)

Proof. By Theorem 6.1, it suffices to prove the “only if” part. Let V = V(u(u)) and assume that V' is

finite-dimensional. We proceed by induction on n. For the base case n = 2, it follows from Propositions

5.1 and 5.2. Then we assume that n > 3.

Recall the notation from §6.2 and set £ to be the highest /s -weight vector. Consider the subspace
V defined in (6.4), then V is a finite-dimensional Bz z-module by Lemma 6.3. Clearly, £ € V and ¢ is
a highest /5z-weight vector of the l5z-weight fr(u) = (pu2(u),- -, p(w)). Thus the cyclic span Bgz is
a finite-dimensional highest (5 z-weight with highest (gz-weight f(u). In particular, V(f(u)) is finite-
dimensional. By induction hypothesis, we conclude that the conditions from the theorem are satisfied for
the components of f(u) (that is for 1 < i < ») for some v, € C.

Similarly, consider the subspace V defined in (6.5), then V is a finite-dimensional Bgc-module by
Lemma 6.4. Clearly, £ € V and § is a highest /4 c-weight vector with the /s -weight

o) — Sx Sx Sk L. Sx Sx Sx
Lol (“)_<’“(“+ 2>+2u“”(“+ 2)’ ’””‘1(7” 2>+2u””(“+ 2>>

Let /17 (u) be the series associated to p°(u) as defined in (4.24). Then it is clear that

() = fis (u+ ).

By the same argument as in the previous paragraph, we conclude that the conditions from the theorem
are satisfied for 1 <7 < s — 1 for some v, € C.

Now it suffices to show that we can choose 1 = 2. Recall from (4.25) that if e; = g;41, for 1 <1 < s,
then

28U — €ipit1 + Wip1 = 26i41U — Ei41Pit2 T Wit2.

Hence the number ~ only shows up in (6.11) when &; # £;41 and s; = s;+1. By Proposition 5.1, the
pair (P;(u),~y) satisfying (6.11) is unique in this case. Since € is simple, there is at most one i such that
€; # €;41. Therefore, we can always make sure that y; = 72, completing the proof of the theorem. O

Corollary 6.9. Conjecture 6.2 holds when s is the standard parity sequence and € is simple.
Proof. This follows immediately from Theorem 6.8, Theorem 2.4, and equation (4.26). O
Theorem 6.10. Conjecture 6.2 holds for arbitrary € when s is the standard parity sequence and n = 1.

Proof. The proof is similar to that of Theorem 6.8 by induction and Theorem 6.8. Again the point is to
argue that v; and o are related by specific rule provided the assumptions hold. O
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7. DRINFELD FUNCTOR AND DAHA orF TYPE BC
sec:schur-weyl

7.1. Degenerate affine Hecke algebras. Let [ be a positive integer. Following [CGM14], we first recall
basics about degenerate affine Hecke algebras (dAAHA for short) of types A; and BC;.

Denote by &; the symmetric group on [ elements and set Zo = 7Z/27Z. Then the wreath product
W, = Zy ! S, is the Weyl group of type BC;. Let eq,---,e; be the standard basis of R!, then the
non-reduced root system of type BC; consists of the following set of vectors,

{*ei+ej, *ei—ej | 1<i#j<IPU{xe;, £2¢; | 1 <i <1}
For 1 <1 # j < j, let 045, ¢; be the reflections about the root vectors e; — e; and e;, respectively. Set
0; =041 for 1 <@ < 1.
Definition 7.1. For 9, € C and l € Z~q, the dAHA }%1 of type Ay is the associative algebra generated
by the group algebra C[&;] and y1,--- ,y; with the relations y;y; = y;v:, 1 < 1,7 <1, and
03y — Yir105 = U1, 1<i<l,
0iYj = YiOis j#Fii+1
def :dAHA-B
Definition 7.2. For ¢1,92 € C and | € Z~o, the dAHA ﬂ{%l 9, of type BCy is the associative algebra
generated by the group algebra C[W;| and y1,--- ,y; with the relations y;y; = y;yi, 1 <1i,j <1, and
0iYi — Yi+10; = V1, Qyi = yis, 1<i<l,
Sy + yist = V2, 0iy; = Yjoi, JF i1+ 1L

The following lemmas are well known, see e.g. [CGM14, Section 2].

Lemma 7.3. The subalgebra of 3{5917192 generated by y;, 1 <1 <1, and C[&] is isomorphic to the dAHA

9{591 of type A;. O
One has the following natural embeddings,
i H Y Ky e, vie v 0oy, 1<l <,
CE 9{59217192 S HY gy Ui Yoty Si P Sidi—lyy 05 5 Oty 1<l <,
n @i Ky @HE I y 3R RE RS,

Note that due to the relation [g;, yj] = U10j; (¢ — gj) for i < 7, the last embedding 71 ® 720 does not extend
. ! 1 !
to an embedding 9—(19117192 ® 5-619"’1’792 = Hy, 9,
lem:dAHA-B-other
Lemma 7.4 ([EFM09, Lemma 3.1]). The algebra }%1 9, 18 isomorphic to the algebra generated by ele-
ments y;, 1 < i <1, and by C[W] with the relations,

OiYi = Yity10i, oiyj = Y;0i, J# i1+ 1,
QY1 = —VYiSls QYi = YiSi, i # 1,

910 92
1V2
visysl = —5~0i(G = <) Ly ((ijaik — OikOjk)
+ UikUjk(§i§j — GiSk + §j§k) - Ujk%k(<¢§j + SiSk — <j§k)>-
Moreover, this presentation is related to the one in Definition 7.2 by

i—1 l l
Vs V1§ h %
Yi = Yi — ?Ci + ) E Oik — ) E Oik — 5 E OikSiSk - O
k=1 k=i+1 llc;él
A
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Lemma 7.5 ([Lus89, 3.12]). The center of the dAHA U'Clﬁl 9, (Tesp. 9—%1) is generated by the &;-symmetric
polynomials in y3,--- ,y? (resp. y1,-* , Y1) d

7.2. Drinfeld functor for super Yangian. The symmetric group &; acts naturally on V% where the
operator o;; for 7 < j acts as

) = 3" 5,589 EY € Ena(v). °d PPH
a,b=1
Here we use the standard notation
EY =190-D @ £; 919079 € End(V®!),  1<k<L
Set

Ve
® = 3 (~)iliHitl Y @ By € End(V®) @ End(V), 1<k <L
ij=1
Let e = £1. Let M be any ﬂ{fgl—module. Set
-1
Da(M) =MV, DEM) =Ds(M)/ ) (Imo; — <),
i=1
where the symmetric group acts on @4(M) by the diagonal action, namely o; acts on M @ V& as
o; @ P for 1 < i < L.
For x, c € C, define

TX(u) = T (w) - T (u) € 3, [[u']] @ End(VF) @ End(V),
where
U— XYk +c¢
Then the map T'(u) — TX(u) induces an action of Y on Dg(M).

The following statement for the Yangian Y(gly) case is well known, see [Ara99, Proposition 2| and
[Dri86, Theorem 1].

1
TXuw) =1+ ————2a®,  1<k<L
)

lem:D-functor-A

Lemma 7.6 ([LM21, Lemma 4.2]). Suppose 91 # 0 and ¥1x = e. Let M be any f]-%l—module. Then the
map T (u) — TX(u) induces an action of Y5 on D5(M).

Therefore, one has a functor @5 from the category of H%l—modules to the category of Ys-modules. We
call the functor @ the Drinfeld functor. For Schur-Weyl type dualities for superalgebras of type A, see
[Ser84, BR87, Moo03, Mit06, F1i20, LM21, Lu21, KL.22, Lu23, She22, Jan23] for more details.

7.3. Drinfeld functor for twisted super Yangian. We need the following
lem:embedding
Lemma 7.7. For any v € C, the mapping

:emd-b~;
¢ : B(u) = T(u)(GE +vu )T (—u) e emET Py
defines a superalgebra homomorphism from the twisted Yangian Bse to the super Yangian Y.

Proof. In the same way as Proposition 3.3, it suffices to show that the matrix G, + yu~! satisfies the
reflection equation (3.2) which it is known in [AACT 04, RS07, BR09). O

For brevity, we set

Gs,'y(u) :Gs_'_,yu—l’ g = m2—n

Consider the following elements in 9{591,192 [[u=!]] ® End(V®) @ End(V),
1 1

TXu) =1+ ———2ae®, u)=1- ———
a U—J— XYk k() U+ — XYk

® @(’@7
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for 1 < k <. By the identity @ - @*) = 2)0*) we have

TX (u)SX(u) = 1. eqrtTtimgsTs
Set Bechi
BX(u) = T (u) -+ T ()G ()8 (—u) -+ S (—u) SUEEEE)

as an element in %fgl,ﬁz[[u_lﬂ ® End(V®) @ End(V). Here G (u) stands for 1 ® 1 @ G (u).
Given any 5{591#92—m0dule M, we can regard it as an J‘%l—module and we have the Ys-module D (M)
if 91x = ¢, by Lemma 7.6. Moreover, the action of Y5 on D5(M) is given by

T(u) — Fu) - - T (u).

Hence it follows from Lemma 7.7 and (7.4) that B(u) — %X(u) induces an action of Bg . on D5(M).
The &;-action on V® can be extended to W; by setting the action of ¢, on V¥ by multiplication on
the k-th factor by the matrix G*. We also write this operator as G%. For an 9—(591 9,-module M, the group
W; acts on M @ V® by the diagonal action. We further set
Dy (M) =D (M)/(Img — €).
We shall need the following lemma. Recall that wy = Y7 | sqeq and 27 =Y 7 | s4. Set
Q= Z (—1)‘i‘|j|+‘i|+‘j‘EZ.(J’?) ® Ejj,
i,j:Ei:E]'
@Z —@qk _ Q= Z (_1)\i\|j|+\i|+\j\E§]’?) ® Eij.
i7j:5i7é‘€j
lem:cgm-thm4.5
Lemma 7.8. We have

Q Q! +afa; = 25!,
Ge(Q;Q) — aPa)) = w1a).
Proof. The formulas follow from a direct computation. ]

The following are the main results of this section.
prop:Drinfeld-functor-BC
Proposition 7.9. Let M be any 9{5917192—m0dule. If 99 = ¥1(2y + w1) and 91x = €, then the map

B(u) = BX(u) defines a representation of the twisted super Yangian Bse on the space Dg (M).
Proof. The proof is similar to that of [CGM14, Theorem 4.5] by using Lemma 7.8. U

Therefore, one has a functor &g . from the category of 5{591 9,-modules to the category of B c-modules.
Again, we call the functor g . the Drinfeld functor.

Let I,11,l3 € Z>o such that [ =11 + l2. Let M; be an J‘Clﬁll—module, My an 3{5921 ﬂg—module. Set
!
My © My = 9{1917192 ®9'f5911
see (7.1). Then M; ® My is an J—Cfgl 9,-module and hence Dg (M1 © M) is Bs e-module.
Note that @5(M1) is a Ys-module and Dg (Mz) is a Bse-module, thus D5 (M1) @ D; (Ma) is a
Bs,e-module induced by the coproduct in Proposition 3.5.

®:Hi921,192 (M7 ® Ms),

prop:DF-coproduct
Proposition 7.10. As B c-modules, we have D (M1 © M) = D3 (M) @ D o (M2).

Proof. The proof is parallel to that of [CGM14, Porposition 4.6]. O

We say that a Bs-module is of level [ if it decomposes as direct sums of submodules over € of V& as
a £-module.
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thm:Drinfeld-B
Theorem 7.11. Let 91,92, X,y be as in Proposition 7.9 and p = #{i|e; = 1,1 < i < »}. If max{p,m+
n—p} <, then the Drinfeld functor 9D;  provides an equivalence between the category of finite-dimensional
9{5917192 -modules and the category of finite-dimensional B, -modules of level I.

We prove the theorem in Section 7.4.
thm:Drinfeld-simple

Theorem 7.12. Let 91,92, x,7 be as in Proposition 7.9. Let M be an irreducible 5—%1 9,-module. Then
Ds. (M) is either 0 or an irreducible B c-module.

The theorem is analogous to [Ara99, Theorem 11] for Yangian Y(gly), [Naz99, Theorem 5.5] for super
Yangian of type Qu, [LM21, Proposition 4.8] for super Yangian Y5 and [CGM14, Theorem 4.7] for twisted
Yangian of type AIIL. The proof is similar to that of [CGM14, Theorem 4.7] with suitable modifications
for super case as presented in the proofs of [Naz99, Theorem 5.5] and [LM21, Proposition 4.8]. Therefore,
we shall not provide the details.

app:B
7.4. Proof of Theorem 7.11. In this section, we give a proof of Theorem 7.11. The strategy is essentially
the same as in [CGM14].

Recall that the action of Bse on @5 (M) is induced by the map B(u) — BX(u), see (7.5). Expanding
PBX(u) as a series in u~! with coefficients in 9{59“92 ® End(V®) @ End(V), we find the first 3 coefficients
are given by G¢ (understood as 1 ® 1 ® G¢),

l
yH1e) (@Mee +ceal),
k=1

l
1® Z@z‘k)) + > (ea®eMe+ Y ecree®an)

[\
2
/N

k=1 1<k<r<l 1<r<k<l eq:B—matrix(—%%c}]
l I ! '
+ (1 ©Y @““)Ge (1 ©Y Q(’")> +y (GE((g — k) @ QM) + (7 + xu) ® Q(k))GE).
k=1 r=1 k=1
We set
%X(u) = Z Z bg)u*r & Eij,
7€l i,j=1

where bz(;) € 9{5917192 ® End(V®)). From above, we conclude that

l
bl(-?) = €05, bl(.;.) = Y0i; + si(ei + €5) Z 18 Ez(Jk)
k=1

Before computing bz(jz-), we prepare the following lemma.
lem:drinfeld-cal

Lemma 7.13. Suppose ¢; # €;. Then as operators on Ve we have

l k—1 N
Si Z <Z Ork — Z Urk) Ez(jk) = —81'( Z @(k)@(T)Ge + Z Ge@(k)@(r)jq,:,,lem_blﬁﬁljl
k=1 r=1 r=k+1 1<k<r<l 1<r<k<l K

l l .
S Z (Z OkrSrSk + w1§k> EZ(Jk) = E,‘( Z Q(k)GEQ(r)> . eq:lemble%éil
1

k=1 k=1 *

l

r=
r#k
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Here by (-)ij, we mean the (i, j)-th entry, namely, for G € End(V®!) @ End(V),

G= 3 (~1)llitli(G),; e By
ij=1
Proof. Recall from (7.2) that o, = Pk = D=1 E(T)Elga), therefore the left hand of (7.7) is equal
to
ZZS@SG o EC(LI; ZZS’S“ T)E
r<k a=1 k<ra=1

A straightforward computation implies

OrGles gk
> o a®Male+ Y cea

1<k<r«i 1<r<k<l
Z (ZEZ n Zfa> Foilon s> ® Ejj(— 1)1l al
i,7,a=1 r<k k<r
After interchanging k and r and using €; = —¢;, one obtains (7.7).

Similarly, the left hand side of (7.8) is equal to

l %
T)
g E 8i8q€aEilL E +w1§ sigiE U,

k,r=1a=1
r#£k

while we also have

l
Y aWere = 3 Z e EWED) @ Eyy(—1)lliiHli+ilHa

kor=1 k,r=11,j,a=1
r#k
DS T
k=11,5,a=1
Now (7.8) follows from w1 = 7| 540 = >y (—1)lle,. O
Note that B
GeeW +a®eE =) (e +e5a®. M)
ij=1

It follows from (7.6), (7.9), and Lemma 7.13 that if ¢; # ¢, then

) S ey (S 3 ) ont

r=k+1
l . ! X
+ g€ Z (Z TkrSrSk + w1<k> ® Ei(j) — 2x€; Z Yk @ Ei(j :
k=1 r=1 k=1
r#£k
! ol . e o € (k)
k
= —2; kzl (ka +5 ;mk -3 zk;lo—m =5 2 Okrsrsk — 5 (w1 + 27)%) ® B
= = r=

r=1
r#k
Therefore, if we suppose further that ¥ = ¥1(2y + w;) and € = 91, we have

l
k
Si€191 bz(]2) = —QEi Z Vi ® Ei(j ),
k=1
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see Lemma 7.4 and cf. [CGM14, Equation (4.1)].
The rest of the proof is similar to the one that is outlined in [CGM14, proof of Theorem 4.3]. We

shall omit the details. The J (E;;) there should be replaced by bg) as the J-presentations of (twisted)

super Yangians are not discussed here. The fact that the tensor space V& decomposes as a direct sum of
irreducible modules over € x W; follows from the proof of [She22, Theorem 5.8]. A precise decomposition
parallel to the one discussed in [ATY95, Introduction| (namely one only needs to change W) to the ¢-
module associated to the tuple A) can be deduced from a standard approach as in [CW12, Theorem 3.11]
or [ATY95], see also [Ker71, Chapter IT]. This decomposition and the condition max{p, >« — p} < [ make
sure that @3 (M) is nonzero if M is nonzero.

REFERENCES

[AACT04] D. Arnaudon, J. Avan, N. Crampé, A. Doikou, L. Frappat, and E. Ragoucy, General boundary conditions for the
sl(N) and sl(M|N) open spin chains, J. Stat. Mech. Theory Exp. 8 (2004), 005, 36. MR2115253 135
[Ara99] T. Arakawa, Drinfeld functor and finite-dimensional representations of Yangian, Comm. Math. Phys. 205 (1999),
no. 1, 1-18. MR1706920 135, 37
[ATY95] S. Ariki, T. Terasoma, and H. Yamada, Schur-Weyl reciprocity for the Hecke algebra of (Z/rZ) 1 Sy, J. Algebra
178 (1995), no. 2, 374-390. MR1359891 139
[BK23] L. Bagnoli and S. Kozié, Double Yangian and reflection algebras of the Lie superalgebra gl
arXiv:2311.02410 (2023). 12
[BRO9] S. Belliard and E. Ragoucy, The nested Bethe ansatz for ‘all” open spin chains with diagonal boundary conditions,
J. Phys. A 42 (2009), no. 20, 205203, 35. MR2515596 12, 6, 7, 9, 10, 31, 35
[BR87] A. Berele and A. Regev, Hook Young diagrams with applications to combinatorics and to representations of Lie
superalgebras, Adv. in Math. 64 (1987), no. 2, 118-175. MR884183 135
[CGM14] H. Chen, N. Guay, and X. Ma, Twisted Yangians, twisted quantum loop algebras and affine Hecke algebras of type
BC, Trans. Amer. Math. Soc. 366 (2014), no. 5, 2517-2574. MR3165646 11, 2, 34, 36, 37, 39
[Che84] I. Cherednik, Factorizing particles on a half line, and root systems, Teoret. Mat. Fiz. 61 (1984), no. 1, 35-44.
MR774205 11
[CW12] S.-J. Cheng and W. Wang, Dualities and representations of Lie superalgebras, Graduate Studies in Mathematics,
vol. 144, American Mathematical Society, Providence, RI, 2012. MR3012224 12, 39
[Dri86] V. Drinfeld, Degenerate affine Hecke algebras and Yangians, Funktsional. Anal. i Prilozhen. 20 (1986), no. 1,
69-70. MR831053 135
[EFMO09] P. Etingof, R. Freund, and X. Ma, A Lie-theoretic construction of some representations of the degenerate affine
and double affine Hecke algebras of type BC,,, Represent. Theory 13 (2009), 33-49. MR2480387 134
[F1li20] Y. Flicker, Affine quantum super Schur-Weyl duality, Algebr. Represent. Theory 23 (2020), no. 1, 135-167.
MRA4058428 135
[Gow07] L. Gow, Gauss decomposition of the Yangian Y (gl
MR2350438 15, 8, 11, 13
[GR16] N. Guay and V. Regelskis, Twisted Yangians for symmetric pairs of types B, C, D, Math. Z. 284 (2016), no. 1-2,
131-166. MR3545488 12
[Jan23] P. Jankovic, Schur-weyl functors for super yangians and deformed double current algebras, Ph.D thesis, University
of Alberta (2023). 135
[Ker71] A. Kerber, Representations of permutation groups. I, Lecture Notes in Mathematics, vol. Vol. 240, Springer-Verlag,
Berlin-New York, 1971. MR325752 139
[Ket23] B. Kettle, Orthosymplectic, Periplectic, and Twisted Super Yangians, Ph.D thesis, University of Alberta (2023).
12
[KL22] J.-H. Kwon and S.-M. Lee, Super duality for quantum affine algebras of type A, Int. Math. Res. Not. IMRN 23
(2022), 18446-18525. MR4519149 135
[LM21] K. Lu and E. Mukhin, Jacobi- Trudi identity and Drinfeld functor for super Yangian, Int. Math. Res. Not. IMRN
21 (2021), 16751-16810. MR4338233 135, 37
[LPRS19] A. Liashyk, S. Z. Pakuliak, E. Ragoucy, and N. A. Slavnov, New symmetries of gl(N)-invariant Bethe vectors, J.
Stat. Mech. Theory Exp. 4 (2019), 044001, 24. MR4057221 18, 9
[Lu21] K. Lu, Gelfand-Tsetlin bases of representations for super Yangian and quantum affine superalgebra, Lett. Math.
Phys. 111 (2021), no. 6, Paper No. 145, 30. MR4346502 135

m|ns ArXiv preprint

Comm. Math. Phys. 276 (2007), no. 3, 799-825.

m\n)y



40
[Lu22]
[Lu23)
[Lus89]

[LWZ23)
[LWZ.24]

[Mac02]
[Mit06]
[Mol22]
[Mol9g]
[Moo03]
[MRO2]
[Naz20]
[Naz91]
[Naz99]
[01592]
[Pen16]

[RS07]

[Ser84]

[She22]
[Sk18S]

[Zha95)
[Zha96)]

KANG LU

K. Lu, 4 note on odd reflections of super Yangian and Bethe ansatz, Lett. Math. Phys. 112 (2022), no. 2, Paper
No. 29, 26. MR4400677 12, 6, 9, 30, 32

K. Lu, Schur-Weyl duality for quantum toroidal superalgebras, J. Pure Appl. Algebra 227 (2023), no. 9, Paper
No. 107382, 19. MR4569699 135

G. Lusztig, Affine Hecke algebras and their graded version, J. Amer. Math. Soc. 2 (1989), no. 3, 599-635.
MR991016 135

K. Lu, W. Wang, and W. Zhang, A Drinfeld type Presentation of twisted Yangians, arXiv:2308.12254 (2023). 12
K. Lu, W. Wang, and W. Zhang, A Drinfeld presentation of twisted Yangians via degeneration, in preparation
(2024). 12

N. MacKay, Rational K-matrices and representations of twisted Yangians, J. Phys. A 35 (2002), no. 37, 7865—
7876. MR1945798 11, 2

H. Mitsuhashi, Schur-Weyl reciprocity between the quantum superalgebra and the Iwahori-Hecke algebra, Algebr.
Represent. Theory 9 (2006), no. 3, 309-322. MR2251378 135

A. Molev, Odd reflections in the Yangian associated with gl(m|n), Lett. Math. Phys. 112 (2022), no. 1, Paper
No. 8, 15. MR4367922 12, 6, 30, 32

A. Molev, Finite-dimensional irreducible representations of twisted Yangians, J. Math. Phys. 39 (1998), no. 10,
5559-5600. MR1642338 123

D. Moon, Highest weight vectors of irreducible representations of the quantum superalgebra $l4(gl(m,n)), J. Korean
Math. Soc. 40 (2003), no. 1, 1-28. MR1945710 135

A. Molev and E. Ragoucy, Representations of reflection algebras, Rev. Math. Phys. 14 (2002), no. 3, 317-342.
MR1894013 11, 2, 9, 10, 11, 13, 20, 30

M. Nazarov, Yangian of the general linear Lie superalgebra, SIGMA Symmetry Integrability Geom. Methods Appl.
16 (2020), Paper No. 112, 24 pages. MR4170710 15

M. Nazarov, Quantum Berezinian and the classical Capelli identity, Lett. Math. Phys. 21 (1991), no. 2, 123-131.
MR1093523 13

M. Nazarov, Yangian of the queer Lie superalgebra, Comm. Math. Phys. 208 (1999), no. 1, 195-223. MR1729884
137

G. Olshanski, Twisted Yangians and infinite-dimensional classical Lie algebras, Quantum groups (Leningrad,
1990), 1992, pp. 104-119. MR1183482 12

Y .-N. Peng, Parabolic presentations of the super Yangian Y(g[M|N) associated with arbitrary 01-sequences, Comm.
Math. Phys. 346 (2016), no. 1, 313-347. MR3528423 15, 8

E. Ragoucy and G. Satta, Analytical Bethe ansatz for closed and open gl(M|N) super-spin chains in arbitrary
representations and for any Dynkin diagram, J. High Energy Phys. 9 (2007), 001, 40. MR2342430 12, 6, 7, 9, 10,
35

A. Sergeev, Tensor algebra of the identity representation as a module over the Lie superalgebras Gl(n, m) and
Q(n), Mat. Sb. (N.S.) 123(165) (1984), no. 3, 422-430. MR735715 135

Y. Shen, Quantum supersymmetric pairs and 1Schur duality of type AIII, arXiv:2210.01233 (2022). 112, 35, 39
E. Sklyanin, Boundary conditions for integrable quantum systems, J. Phys. A 21 (1988), no. 10, 2375-2389.
MR953215 11

R. B. Zhang, Representations of super Yangian, J. Math. Phys. 36 (1995), no. 7, 3854-3865. MR1339907 12, 32
R. B. Zhang, The gl(M|N) super Yangian and its finite-dimensional representations, Lett. Math. Phys. 37 (1996),
no. 4, 419-434. MR1401045 12, 5

K.L.: DEPARTMENT OF MATHEMATICS, UNIVERSITY OF VIRGINIA,
141 CABELL DR, CHARLOTTESVILLE, VA 22903, USA
Email address: kang.lu@virginia.edu



	1. Introduction
	2. Super Yangian
	3. Twisted super Yangian of type AIII
	4. Highest weight representations
	5. Classifications in rank 1
	6. Classification in higher ranks
	7. Drinfeld functor and dAHA of type BC
	References

