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Abstract. We study the super analogue of the Molev-Ragoucy reflection algebras, which we call twisted

super Yangians of type AIII, and classify their finite-dimensional irreducible representations. These super-

algebras are coideal subalgebras of the super Yangian Y(glm|n) and are associated with symmetric pairs of

type AIII in Cartan’s classification. We establish the Schur-Weyl type duality between degenerate affine

Hecke algebras of type BC and twisted super Yangians.
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1. Introduction

Reflection algebras, introduced by Sklyanin in his seminal paper [Skl88], are pivotal in constructing the

commutative Bethe subalgebra and ensuring integrability of quantum integrable systems with boundary

conditions. These algebras, inspired by Cherednik’s scattering theory [Che84] for factorized particles on

the half-line, form the foundation for various studies.

In [MR02], Molev and Ragoucy studied a family of reflection algebras Bε, whose relations are described

in terms of reflection equation and a certain unitary condition, and classified their finite-dimensional

irreducible representations. These reflection algebras can also be called twisted Yangians of type AIII

as they are coideal subalgebras of the Yangian Y(gln) and deformations of the fixed point subalgebra of

U(gln[x]) associated to symmetric pair of type AIII, see §3.2. The twisted Yangians depend on a sequence

ε = (ε1, ε2, · · · , εn), where εi = ±1, and for different ε the Bε might not be isomorphic.

These twisted Yangians were further investigated by Chen, Guay and Ma in [CGM14]. They related

the twisted Yangians (in R-matrix presentation) with another family of twisted Yangians introduced by

MacKay [Mac02] (in Drinfeld’s original presentation). A Drinfeld functor from the category of modules

over degenerate affine Hecke algebras of type BC (dAHA) to the category of modules over twisted Yangians

were constructed. It turns out the Drinfeld functor is an equivalence of categories under certain condi-

tions, similar to the usual Schur-Weyl duality. Moreover, the Drinfeld functor sends a finite-dimensional

irreducible module over dAHA to either zero space or a finite-dimensional irreducible module over twisted

Yangians.

In the present article, we shall study the supersymmetric generalization of Bε, that are twisted super

Yangians of type AIII. The twisted super Yangians Bs,ε are coideal subalgebras of the super Yangian
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Y(glsm|n) that depends on sequences of parity sequence s = (s1, s2, · · · , sm+n) and ε = (ε1, ε2, · · · , εm+n),

where si, εi = ±1 for 1 ⩽ i ⩽ m+ n. The new sequence s corresponds to the Dynkin diagram we choose

for the associated general linear Lie superalgebra glm|n. When s satisfies si = 1 for 1 ⩽ i ⩽ m and

si = −1 otherwise, we call s the standard parity sequence. The standard parity sequence corresponds to

the standard Borel subalgebra of glm|n.

The twisted super Yangians appear previously (under the name reflection superalgebras) in the study

of analytical and nested algebraic Bethe ansatz [RS07,BR09] for quantum integrable models (open spin

chains) with symmetry described by twisted super Yangians. For the case of the standard parity sequence

s and a specific ε, they computed the highest weight of twisted super Yangian for a highest weight vector

of super Yangians. They are also recently studied in [Ket23], where some partial results of this paper

were obtained, and in [BK23], where a double version of twisted super Yangian is introduced and studied.

Note that in [Ket23,BK23], the author deals with twisted super Yangians associated with the standard

parity sequence s and a specific ε while ours are arbitrary1.

Our primary objective is to obtain analogous results to [MR02,CGM14] with arbitrary s and ε. We use

similar strategy as in [MR02,CGM14]. Under our setting, s and ε are both arbitrary. The calculations

become more complicated than that in [MR02,CGM14]. We need to put extra effort to correctly insert

the necessary sign factors s and ε.

Finite-dimensional irreducible representations of super Yangians were classified by Zhang [Zha95,Zha96]

for the standard parity sequence. A complete and concrete description of criteria for an irreducible

Y(glsm|n)-module (for arbitrary s) being finite-dimensional is not available, though such a criteria can be

obtained recursively using the odd reflections [Mol22, Lu22]. Consequently, we only have classification

of finite-dimensional irreducible Bs,ε-modules for the cases (1) arbitrary ε when n = 0, 1 and (2) the

standard parity sequence s when the occurrence of i such that εi ̸= εi+1 is at most 1.

There are also twisted Yangians of types AI and AII introduced by Olshanski [Ols92] and of types BCD

introduced by Guay and Regelskis [GR16] via R-matrix presentation. Another family of twisted Yangians

associated to general symmetric pairs were introduced by MacKay [Mac02] in terms of Drinfeld’s J-

symbols. More recently, together with Wang and Zhang, we introduced another family of twisted Yangians

for symmetric pairs of split types in Drinfeld’s new presentation, [LWZ23, LWZ24]. The isomorphism

between these families remains unproven, offering an interesting avenue for future research. Results for

certain types like type AI and AIII can be found in [LWZ23,CGM14], respectively. It is an interesting

question to find Drinfeld’s original and new presentations for twisted super Yangians of type AIII.

This article is organized in the following fashion. Section 2 revisits basic properties of the super Yangian

Y(glsm|n). Section 3 delves into twisted super Yangians and their properties. Section 4 explores highest

weight representation theory and tensor product structures for twisted super Yangians. Section 5 classifies

finite-dimensional irreducible representations for rank 1, while Section 6 extends this classification to

higher ranks in key cases. Finally, Section 7 establishes a Schur-Weyl type duality between degenerate

affine Hecke algebras of type BC and twisted super Yangians.

Acknowledgments. The author is partially supported by Weiqiang Wang’s NSF grant DMS-2001351.

2. Super Yangian
sec:super yangiansec glmn

2.1. General linear Lie superalgebras. Throughout the paper, we work over C. In this section, we

recall the basics of the general linear Lie superalgebra glsm|n, see e.g. [CW12] for more detail.

A vector superspace W = W0̄ ⊕W1̄ is a Z2-graded vector space. We call elements of W0̄ even and

elements ofW1̄ odd. We write |w| ∈ {0̄, 1̄} for the parity of a homogeneous element w ∈W . Set (−1)0̄ = 1

and (−1)1̄ = −1.

1For the classical limit, the treatment is the same for twisted super Yangians associated to different s and ε, but the

representations theory does rely on s and ε.
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Fix m,n ∈ Z⩾0 and set κ = m + n. Denote by Sm|n the set of all sequences s = (s1, s2, . . . , sκ)

where si ∈ {±1} and 1 occurs exactly m times. Elements of Sm|n are called parity sequences. The parity

sequence of the form s0 = (1, . . . , 1,−1, . . . ,−1) is the standard parity sequence.

Fix a parity sequence s ∈ Sm|n and define |i| ∈ Z2 for 1 ⩽ i ⩽ κ by si = (−1)|i|.

The Lie superalgebra glsm|n is generated by elements esij , 1 ⩽ i, j ⩽ κ, with the supercommutator

relations

[esij , e
s
kl] = δjke

s
il − (−1)(|i|+|j|)(|k|+|l|)δile

s
kj ,

where the parity of esij is |i| + |j|. In the following, we shall drop the superscript s when there is no

confusion.

Denote by U(glsm|n) the universal enveloping superalgebra of glsm|n. The superalgebra U(glsm|n) is a

Hopf superalgebra with the coproduct given by ∆(x) = 1⊗ x+ x⊗ 1 for all x ∈ glsm|n.

The Cartan subalgebra h of glsm|n is spanned by eii, 1 ⩽ i ⩽ κ. Let ϵi, 1 ⩽ i ⩽ κ, be a basis of h∗ (the

dual space of h) such that ϵi(ejj) = δij . There is a bilinear form ( , ) on h∗ given by (ϵi, ϵj) = siδij . The

root system Φ is a subset of h∗ given by

Φ := {ϵi − ϵj | 1 ⩽ i, j ⩽ κ and i ̸= j}.

We call a root ϵi − ϵj even (resp. odd) if |i| = |j| (resp. |i| ≠ |j|).
Set αi := ϵi − ϵi+1 for 1 ⩽ i ⩽ κ. Denote by

P :=
⊕

1⩽i⩽κ
Zϵi, Q :=

⊕
1⩽i<κ

Zαi, Q⩾0 :=
⊕

1⩽i<κ
Z⩾0αi

the weight lattice, the root lattice, and the cone of positive roots, respectively. Define a partial ordering ⩾
on h∗: µ ⩾ ν if µ− ν ∈ Q⩾0.

A module M over a superalgebra A is a vector superspace M with a homomorphism of superalgebras

A → End(M). A glsm|n-module is a module over U(glsm|n). However, we shall not distinguish modules

which only differ by a parity.

For a glsm|n-module M , define the weight subspace of weight µ by

(M)µ := {v ∈M | eiiv = µ(eii)v, 1 ⩽ i ⩽ κ}. (2.1)
eq:uweight-spaceeq:uweight-space

For a glsm|n-module M such that (M)µ = 0 unless µ ∈ Q, we say that M is Q-graded.

For a glsm|n-moduleM , we call a vector v ∈M singular if eijv = 0 for 1 ⩽ i < j ⩽ κ. We call a nonzero

vector v ∈M a singular vector of weight µ if v satisfies

eiiv = µ(eii)v, ejkv = 0,

for 1 ⩽ i ⩽ κ and 1 ⩽ j < k ⩽ κ. A nonzero vector v ∈ (M)µ is a highest (resp. lowest) weight vector

of M if (M)ν = 0 unless µ − ν ∈ Q⩾0 (resp. ν − µ ∈ Q⩾0). Clearly, a highest weight vector is singular

while a lowest weight vector v satisfies ejiv = 0 for 1 ⩽ i < j ⩽ κ.
Denote by L(µ) the irreducible glsm|n-module generated by a singular vector of weight µ.

Let V := Cm|n be the vector superspace with a basis vi, 1 ⩽ i ⩽ κ, such that |vi| = |i|. Let

Eij ∈ End(V ) be the linear operators such that Eijvk = δjkvi. The map ρV : glsm|n → End(V ), eij 7→ Eij

defines a glsm|n-module structure on V . As a glsm|n-module, V is isomorphic to L(ϵ1). The vector vi has

weight ϵi. The highest weight vector is v1 and the lowest weight vector is vm+n. We call it the vector

representation of glsm|n.

sec rtt

2.2. Super Yangians. Fix a parity sequence s ∈ Sm|n and recall the definition of super Yangian Ys :=

Y(glsm|n) from [Naz91].



4 KANG LU

Definition 2.1. The super Yangian Ys is the Z2-graded unital associative algebra over C with generators

{t(r)ij | 1 ⩽ i, j ⩽ κ, r ⩾ 1} and the defining relations are given by

[tij(u), tkl(v)] =
(−1)|i||j|+|i||k|+|j||k|

u− v
(tkj(u)til(v)− tkj(v)til(u)). (2.2)

eq:comm-serieseq:comm-series

where

tij(u) =
∞∑
k=0

t
(k)
ij u

−k, t
(0)
ij = δij ,

and the generators t
(r)
ij have parities |i|+ |j|.

The super Yangian Ys has the RTT presentation as follows. Define the rational R-matrix R(u) ∈
End(V ⊗ V ) by R(u) = 1−P/u, where P ∈ End(V ⊗ V ) is the super flip operator defined by

P=

κ∑
i,j=1

sjEij ⊗ Eji.

The rational R-matrix satisfies the quantum Yang-Baxter equation

R12(u− v)R13(u)R23(v) = R23(v)R13(u)R12(u− v). (2.3)
eq yang-baxtereq yang-baxter

Define the operator T (u) ∈ Ys[[u
−1]]⊗ End(V ),

T (u) =

κ∑
i,j=1

(−1)|i||j|+|j|tij(u)⊗ Eij .

Then defining relations (2.2) can be written as

R(u− v)T1(u)T2(v) = T2(v)T1(u)R(u− v) ∈ Ys[[u
−1]]⊗ End(V ⊗2). (2.4)

eq:RTTeq:RTT

The super Yangian Ys is a Hopf superalgebra with the coproduct

∆ : tij(u) 7→
κ∑

k=1

tik(u)⊗ tkj(u), (2.5)
eq Hopfeq Hopf

and the antipode S : T (u) → T−1(u).

Define the series

t′ij(u) =
∞∑
k=0

t
′(k)
ij u−k

by

T−1(u) =
κ∑

i,j=1

(−1)|i||j|+|j|t′ij(u)⊗ Eij . (2.6)
eq:inverseTeq:inverseT

Then

t′ij(u) = δij +

∞∑
k=1

(−1)k
κ∑

a1,··· ,ak−1=1

t◦ia1(u)t
◦
a1a2(u) · · · t

◦
ak−1j

(u), (2.7)
eq:T’-expressioneq:T’-expression

where t◦ij(u) = tij(u)− δij . In particular, by taking the coefficient of u−r, for r ⩾ 1, one obtains

t
′(r)
ij =

r∑
k=1

(−1)k
κ∑

a1,··· ,ak−1=1

∑
r1+···+rk=r

t
(r1)
ia1

t(r2)a1a2 · · · t
(rk)
ak−1j

, (2.8)
eq:T-expression-compeq:T-expression-comp

where ri for 1 ⩽ i ⩽ k are positive integers.

By (2.4), one has

T−1
1 (−u)R(u+ v)T2(v) = T2(v)R(u+ v)T−1

1 (−u),

T1(u)R(u+ v)T−1
2 (−v) = T−1

2 (−v)R(u+ v)T1(u),
(2.9)

eq:T’RTeq:T’RT
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and

(u− v)[tij(u), t
′
kl(v)] = (−1)|i||j|+|i||k|+|j||k|

(
δkj

κ∑
s=1

tis(u)t
′
sl(v)− δil

κ∑
s=1

t′ks(v)tsj(u)
)
. (2.10)

eq:tt’eq:tt’

For z ∈ C there exists an isomorphism of Hopf superalgebras,

τz : Ys → Ys, tij(u) 7→ tij(u− z). (2.11)
eq tau zeq tau z

The universal enveloping superalgebra U(glsm|n) is a Hopf subalgebra of Ys via the embedding eij 7→
sit

(1)
ij . The left inverse of this embedding is the evaluation homomorphism πsm|n : Ys → U(glsm|n) given by

πsm|n : tij(u) 7→ δij + sieiju
−1. (2.12)

eq:evaluation-mapeq:evaluation-map

The evaluation homomorphism is a superalgebra homomorphism but not a Hopf superalgebra homo-

morphism. For any glsm|n-module M , it is naturally a Ys-module obtained by pulling back M through the

evaluation homomorphism πm|n. We denote the corresponding Ys-module by the same letter M and call

it an evaluation module.

The following standard PBW-type theorem for super Yangian Ys is known.
thm:PBW

Theorem 2.2 ([Gow07, Pen16]). Given any total ordering on the elements t
(p)
ij for 1 ⩽ i, j ⩽ κ and

p ∈ Z>0, the ordered monomials in these elements, containing no second or higher order powers of the

odd generators, form a basis of the super Yangian Ys.

Besides the antipode S, we also have the following anti-automorphisms of Ys defined by

t : Ys → Ys, tij(u) 7→ (−1)|i||j|+|j|tji(u),

n : Ys → Ys, tij(u) 7→ tij(−u).

Then the anti-automorphisms S, t, and n of Ys pairwise commute, see e.g. [Naz20, Proposition 1.5]. Let

Ω be the anti-automorphism of Ys given by

Ω = S ◦ t◦ n, Ω(tij(u)) = (−1)|i||j|+|j|t′ji(−u). (2.13)
OmegaOmega

2.3. Highest weight representations. We first recall the results about the highest weight representa-

tions for Ys from [Zha96].

Definition 2.3. A representation L of Ys is called highest ℓs-weight if there exists a nonzero vector ξ ∈ L

such that L is generated by ξ and ξ satisfies

tij(u)ξ = 0, 1 ⩽ i < j ⩽ κ,
tii(u)ξ = λi(u)ξ, 1 ⩽ i ⩽ κ,

(2.14)
eq:highest-Yeq:highest-Y

where λi(u) ∈ 1 + u−1C[[u−1]]. The vector ξ is called a highest ℓs-weight vector of L and the tuple

λ(u) = (λi(u))1⩽i⩽κ is the highest ℓs-weight of L.

Let λ(u) = (λi(u))1⩽i⩽κ be a κ-tuple as above. Then there exists a unique, up to isomorphism,

irreducible highest weight representation L(λ(u)) with the highest weight λ(u). Any finite-dimensional

irreducible representation of Ys is isomorphic to L(λ(u)) for some λ(u). The criterion for L(λ(u)) being

finite-dimensional was classified in [Zha96] when s is the standard parity sequence.
thm:zhang

Theorem 2.4 ([Zha96]). If s is the standard parity sequence, then the irreducible Ys-module L(λ(u)) is

finite-dimensional if and only if there exist monic polynomials Pi(u), 1 ⩽ i ⩽ κ, such that

λi(u)

λi+1(u)
=
Pi(u+ si)

Pi(u)
,

λm(u)

λm+1(u)
=
Pm(u)

Pκ(u)
, 1 ⩽ i ⩽ κ and i ̸= m,

and degPm = degPκ.
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A criterion for an arbitrary parity sequence s can be recursively deduced from Theorem 2.4 via the

odd reflections of super Yangian, see [Mol22, Lu22]. However, a compact description of such a criterion

for an arbitrary parity sequence s is not available.

Regard U(glsm|n) as a subalgebra of Ys, then we have t
(1)
ii = sieii. In particular, one assigns a glsm|n-

weight to an ℓs-weight via the map

ϖ : B → h∗, λ(u) 7→ ϖ(λ(u)) such that ϖ(λ(u))(eii) = siλi,1, (2.15)
varpi1varpi1

where λi,1 is the coefficients of u−1 in λi(u).

Given a Ys-module L, consider it as a glsm|n-module and its glsm|n-weight subspaces (M)µ, see (2.1).
lem:wt-change

Lemma 2.5. We have

t
(r)
ij (M)µ ⊂ (M)µ+ϵi−ϵj , t

′(r)
ij (M)µ ⊂ (M)µ+ϵi−ϵj ,

for 1 ⩽ i, j ⩽ κ, and r ∈ Z>0.

Proof. By (2.2) and (2.10), we have

[t
(1)
ij , tkl(u)] = (−1)|i||j|+|i||k|+|j||k|(δkjtil(u)− δiltkj(u)

)
, (2.16)

eq:1st-node-tteq:1st-node-tt

[t
(1)
ij , t

′
kl(u)] = (−1)|i||j|+|i||k|+|j||k|(δkjt′il(u)− δilt

′
kj(u)

)
. (2.17)

eq:1st-node-tt’eq:1st-node-tt’

Note that t
(1)
ij is identified with sieij , then the lemma follows from the above equations by a direct

computation. □

Thus, we have the following corollary of Theorem 2.2 and Lemma 2.5.

Corollary 2.6. If L is a Ys-module of highest ℓs-weight λ(u), then L has a glsm|n-weight subspace de-

composition. Moreover, its highest ℓs-weight vector has weight ϖ(λ(u)) and the other weight vectors have

weights that are strictly smaller (with respect to ⩾s defined in §2.1) than ϖ(λ(u)). □

Let Y+
s be the left ideal of Ys generated by all the coefficients of tij(u) with 1 ⩽ i < j ⩽ κ. We write

X
.
= X ′ if X −X ′ ∈ Y+

s . Clearly, if ξ is a highest ℓs-weight vector of Ys and X
.
= X ′, then Xξ = X ′ξ.

prop:t’-l-weight

Proposition 2.7 ([RS07,BR09]). If ξ is a highest ℓs-weight vector of highest ℓs-weight λ(u) in a repre-

sentation L of Ys, then

t′ij(u)ξ = 0, 1 ⩽ i < j ⩽ κ,
t′ii(u)ξ = λ′i(u)ξ, 1 ⩽ i ⩽ κ,

(2.18)
eq:t’-anniheq:t’-annih

for certain λ′i(u) ∈ 1 + u−1C[[u−1]]. (The formal series λ′i(u) will be determined later.)

Proof. Let 1 ⩽ i < j ⩽ κ. By (2.10), for any 1 ⩽ k ⩽ κ, we have

(−1)|i||j|+|i||k|+|j||k|[tkj(u), t
′
ik(v)]

.
= − 1

u− v

κ∑
s=j

t′is(v)tsj(u).

Expanding (u− v)−1 as
∑∞

r=0 v
ru−r−1 and take the coefficients of u−1v−p and u−2v−p, we have

(−1)|i||j|+|i||k|+|j||k|[t
(1)
kj , t

′(p)
ik ]

.
= −t′(p)ij , (2.19)

prop:kill-1prop:kill-1

(−1)|i||j|+|i||k|+|j||k|[t
(2)
kj , t

′(p)
ik ]

.
= −t′(p+1)

ij − t
′(p)
ij t

(1)
jj −

κ∑
s=j+1

t
′(p)
is t

(1)
sj . (2.20)

prop:kill-2prop:kill-2

We prove t
′(p)
ij ξ = 0 for all 1 ⩽ i < j ⩽ κ by induction on p.
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The base case is clear because it is immediate from (2.8) that t
′(1)
ij = −t(1)ij . Suppose now that t

′(p)
ij ξ = 0.

It follows from (2.19) and the induction hypothesis that

t
′(p)
is t

(1)
sj ξ = 0, j < s ⩽ κ. (2.21)

prop:kill-3prop:kill-3

Note that ξ is an eigenvector t
(1)
jj and t

(2)
jj , we have

[t
(2)
jj , t

′(p)
ij ]ξ = 0, t

′(p)
ij t

(1)
jj ξ = 0. (2.22)

prop:kill-4prop:kill-4

Setting k = j in (2.20) and applying (2.20) to ξ, we immediately obtain t
′(p+1)
ij ξ = 0 from (2.21) and

(2.22). Thus by induction, we have t
(r)
ij ξ = 0 for all 1 ⩽ i < j ⩽ κ and r ∈ Z>0.

Since glsm|n can be regarded as a subalgebra of Ys, the Ys-module L is hence a glsm|n-module and

has the weight decomposition. The vector ξ has the weight ϖ(λ). By Theorem 2.2 and Lemma 2.5,

(L)ϖ(λ) is of dimension 1 and all other weights appearing in L are smaller than ϖ(λ). It follows from

Lemma 2.5 that t′jj(u) preserves (L)ϖ(λ) and hence preserves ξ. Therefore, t′jj(u)ξ = λ′i(u)ξ for some

λ′i(u) ∈ 1 + u−1C[[u−1]]. □

By the same strategy, we have the following lemma.
lem:tia-kill

Lemma 2.8. Let ξ be a highest ℓs-weight vector. If 1 ⩽ i < j ⩽ κ and 1 ⩽ c ⩽ a ⩽ κ, then we have

tia(u)t
′
cj(v)ξ = 0. Similarly, if 1 ⩽ i ⩽ κ and 1 ⩽ c < a ⩽ κ, then tia(u)t′ci(v)ξ = 0.

Proof. First we consider the case when a > c. Then by (2.10), we have

[tia(u), t
′
cj(v)]ξ = 0. (2.23)

eq:notsure-001eq:notsure-001

If c < j, it is clear from Proposition 2.7 that tia(u)t
′
cj(v)ξ = 0. If c ⩾ j, then a > c ⩾ j > i,

t′cj(v)tia(u)ξ = 0. It follows from (2.23) that tia(u)t
′
cj(v)ξ = 0.

Then we consider the case when a = c. If a < j, then tia(u)t
′
aj(v)ξ = 0 by Proposition 2.7. If a ⩾ j, by

(2.10), we have

sa(u− v)[tia(u), t
′
aj(v)]ξ =

κ∑
c=1

tic(u)t
′
cj(v)ξ.

Note that the right hand side is independent of a. By setting a = j and using Proposition 2.7, we find

that
κ∑

c=1

tic(u)t
′
cj(v)ξ = 0.

Hence we always have [tia(u), t
′
aj(v)]ξ = 0. Then again by Proposition 2.7,

tia(u)t
′
aj(v)ξ = [tia(u), t

′
aj(v)]ξ + (−1)(|i|+|a|)(|a|+|j|)t′aj(v)tia(u)ξ = 0,

as i < j ⩽ a.

Then we prove the second statement. If c < i, then the statement follows from Proposition 2.7. Now

suppose that c ⩾ i. By (2.10) and the first statement, we have

(−1)|i||a|+|i||c|+|a||c|(u− v)[tia(u), t
′
ci(v)]ξ = −

κ∑
k=1

t′ck(v)tka(u)ξ = 0.

Since a > c ⩾ i, we have t′ci(v)tia(u)ξ = 0. It follows from the above equation that tia(u)t
′
ci(v)ξ = 0,

completing the proof. □

The following proposition was proved in [RS07,BR09] for the standard parity sequence. The strategy

in [RS07,BR09] does not work in general for arbitrary parity sequences.

Let ρk =
∑κ

a=k sa for 1 ⩽ k ⩽ κ. By convention, ρκ+1 = 0.
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prop:highest-weight-inver

Proposition 2.9. Let ξ be a highest ℓ-weight vector of highest ℓ-weight λ(u). Suppose λ′i(u) is defined

as in (2.18), then

λ′i(u) =
1

λi(u+ ρi+1)

κ∏
k=i+1

λk(u+ ρk)

λk(u+ ρk+1)
. (2.24)

eq:la-primeeq:la-prime

Proof. For a given parity sequence s = (s1, s2, · · · , sκ) ∈ Sm|n, set s = (sκ, sκ−1, · · · , s2, s1). To distin-

guish generating series for super Yangians of different parity sequences, we shall write tsij(u), t
s
ij(u), etc.

It is also convenient to identify an operator
∑κ

i,j=1(−1)|i||j|+|j|aij ⊗ Eij in Ys[[u
−1]] ⊗ End(V ) with the

matrix (aij)
κ
i,j=1. Then the extra sign ensures that the product of two matrices can still be calculated in

the usual way.

Recall the Gauss decomposition of super Yangian Ys, see [Gow07,Pen16]. Let Es
ij(u), F

s
ji(u), D

s
kk(u),

where 1 ⩽ i < j ⩽ κ and 1 ⩽ k ⩽ κ, be defined by the Gauss decomposition,

tsii(u) = Ds
i (u) +

∑
k<i

Fsik(u)D
s
k(u)E

s
ki(u),

tsij(u) = Ds
i (u)E

s
ij(u) +

∑
k<i

Fsik(u)D
s
k(u)E

s
kj(u),

tsji(u) = Fsji(u)D
s
i (u) +

∑
k<i

Fsjk(u)D
s
k(u)E

s
ki(u).

Similarly, one can define Es
ij(u), F

s
ji(u), D

s
kk(u).

Let t′sij(u) correspond to t′ij(u) in Ys. Define similarly E′s
ij(u), F

′s
ji(u), D

′s
kk(u), for 1 ⩽ i < j ⩽ κ and

1 ⩽ k ⩽ κ, by

t′sii (u) = Ds
i (u)

−1 +
∑
k>i

E′s
ik(u)D

s
k(u)

−1F′ski(u),

t′sij(u) = E′s
ij(u)D

s
j (u)

−1 +
∑
k>j

E′s
ik(u)D

s
k(u)

−1F′skj(u),

t′sji(u) = D′s
j (u)

−1F′sji(u) +
∑
k>j

E′s
jk(u)D

s
k(u)

−1F′ski(u).

Then

E′s
ij(u) =

∑
i=i0<i1<···<ir=j

(−1)rEs
i0i1(u)E

s
i1i2(u) · · ·E

s
ir−1ir(u),

F′sji(u) =
∑

i=i0<i1<···<ir=j

(−1)rFsirir−1
(u)Fsir−1ir−2

(u) · · ·Fsi1i0(u).
(2.25)

eq:app:e-f-inveq:app:e-f-inv

There exists an isomorphism between Ys and Ys given by the map

tsκ+1−j,κ+1−i(u) → (−1)|i||j|+|j|t′sij(u), 1 ⩽ i, j ⩽ κ, (2.26)
eq:identifieq:identifi

where the signs |i| and |j| are determined by the parity sequence s.

We shall identify tsij(u) with t′sκ+1−j,κ+1−i(u) with certain signs as in (2.26). With this identification,

when κ = 3, one has

T s(u) =

 Ds
3 Es

23(D
s
3)

−1 Es
13(D

s
3)

−1

(Ds
3)

−1Fs32 (Ds
2)

−1 + Es
23(D

s
3)

−1Fs32 Es
12(D

s
2)

−1 + Es
13(D

s
3)

−1Fs32
(Ds

3)
−1Fs31 (Ds

2)
−1Fs21 + Es

23(D
s
3)

−1Fs31 (Ds
1)

−1 + Es
12(D

s
2)

−1Fs21 + Es
13(D

s
3)

−1Fs31

 ,

cf. [LPRS19, equaltion (B.4)]. Here we drop the spectral parameter u and the signs for brevity.
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Under the identification above, one proves similarly to [LPRS19, Theorem 4.2] for the super Yangian

Ys that

Es
κ+1−j,κ+1−i(u) = (−1)|i||j|+|j|E′s

ij(u+ ρj), 1 ⩽ i < j ⩽ κ,

Fsκ+1−i,κ+1−j(u) = (−1)|i||j|+|i|F′sji(u+ ρj), 1 ⩽ i < j ⩽ κ,

Ds
κ+1−k(u) =

1

Ds
k(u+ ρk+1)

κ∏
a=k+1

Ds
a(u+ ρa)

Ds
a(u+ ρa+1)

, 1 ⩽ k ⩽ κ. (2.27)
eq:cartan-current-neweq:cartan-current-new

Now we are ready to prove Proposition 2.9.

It is well known that for a highest ℓs-weight vector v of highest weight λ(u), we have

Es
ij(u)v = 0, tsii(u)v = Ds

i (u)v = λi(u)v, (2.28)
eq:app:1eq:app:1

see e.g. [Lu22, Section 2.5]. By Gauss decomposition,

tsii(u) = Ds
i (u) +

∑
k<i

Fsik(u)D
s
k(u)E

s
ki(u),

it follows from (2.25) and (2.28) that tsii(u)v = Ds
i (u)v. Therefore, by (2.27) and (2.28) that

t′sii (u)v = tsκ+1−i,κ+1−i(u)v = Ds
κ+1−i(u)v =

1

λi(u+ ρi+1)

κ∏
k=i+1

λk(u+ ρk)

λk(u+ ρk+1)
v,

completing the proof of Proposition 2.9. □

3. Twisted super Yangian of type AIII
sec:twisted-super-yangians

3.1. Definition. Fix a sequence of integers ε = (ε1, ε2, · · · , εκ), where εi ∈ {±1}. Denote by Gε the

diagonal κ × κ (super)matrix

Gε = diag(ε1, ε2, · · · , εκ). (3.1)
eq:Geq:G

The matrix Gε satisfies the reflection equation

R(u− v)Gε
1R(u+ v)Gε

2 = Gε
2R(u+ v)Gε

1R(u− v). (3.2)
eq:reflectGeq:reflectG

Definition 3.1 ([MR02,RS07,BR09]). The twisted super Yangian of type AIII Bs,ε is a Z2-graded unital

associative algebra over C with generators {b(r)ij | 1 ⩽ i, j ⩽ κ, r ⩾ 1} and defining relations given by

[bij(u), bkl(v)] =
(−1)|i||j|+|i||k|+|j||k|

u− v
(bkj(u)bil(v)− bkj(v)bil(u))

+
(−1)|i||j|+|i||k|+|j||k|

u+ v

(
δkj

κ∑
a=1

bia(u)bal(v)− δil

κ∑
a=1

bka(v)baj(u)
)

− 1

u2 − v2
δij

( κ∑
a=1

bka(u)bal(v)−
κ∑

a=1

bka(v)bal(u)
)

(3.3)
eq:comm-series beq:comm-series b

and the unitary condition
κ∑

a=1

bia(u)baj(−u) = δij , (3.4)
eq:unitary-serieseq:unitary-series

where

bij(u) =

∞∑
k=0

b
(k)
ij u

−k, b
(0)
ij = δijεi,

and the generators b
(r)
ij have the parity |i|+ |j|.
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Define the operator B(u) ∈ Bs,ε[[u
−1]]⊗ End(V ),

B(u) =

κ∑
i,j=1

(−1)|i||j|+|j|bij(u)⊗ Eij . (3.5)
eq matrix notation beq matrix notation b

Then the defining relations of Bs,ε can also be written as the reflection equation

R(u− v)B1(u)R(u+ v)B2(v) = B2(v)R(u+ v)B1(u)R(u− v) (3.6)
eq:comm-generators beq:comm-generators b

and

B(u)B(−u) = 1. (3.7)
eq:unitaryeq:unitary

We shall also use the algebra B̃s,ε defined in the same way as Bs,ε but with the unitary condition (3.4)

omitted. Since there are no other types in this paper, we shall simply call Bs,ε and B̃s,ε twisted super

Yangian and extended twisted super Yangian, respectively.

The extended twisted super Yangian (reflection superalgebra) previously appeared in [RS07,BR09] on

the study of Bethe ansatz for open spin chains with diagonal boundary conditions. Certain properties on

B̃s,ε has been obtained in [RS07,BR09]. We shall reproduce some of them.

Proposition 3.2. In the extended twisted super Yangian B̃s,ε, the product B(u)B(−u) is a scalar matrix

B(u)B(−u) = f(u)1, (3.8)
eq:bb-centraleq:bb-central

where f(u) is a series in u−2 whose coefficients are central in B̃s,ε.

Proof. The proof is parallel to that of [MR02, Proposition 2.1]. Multiplying both sides of (3.3) by u2− v2
and set v = −u, one has

(−1)|i||j|+|i||k|+|j||k|2u
(
δkj

κ∑
a=1

bia(u)bal(v)− δil

κ∑
a=1

bka(v)baj(u)
)

= δij

( κ∑
a=1

bka(u)bal(v)−
κ∑

a=1

bka(v)bal(u)
)
.

(3.9)

By taking suitable indices i, j, k, l, one obtains that

B(u)B(−u) = B(−u)B(u)

and the matrix is indeed a scalar matrix. Therefore, (3.8) holds and in particular f(u) is a series in u−2

as B(u)B(−u) is even.
Multiplying both side of (3.6) by B2(−v) from the right, we have

R(u− v)B1(u)R(u+ v)f(v) = B2(v)R(u+ v)B1(u)R(u− v)B2(−v)
(3.6)
= B2(v)B2(−v)R(u− v)B1(u)R(u+ v)

= f(v)R(u− v)B1(u)R(u+ v).

Therefore, the coefficients of f(v) are central in B̃s,ε. □

Let h(u) ∈ 1 + u−1C[[u−1]] be such that h(u)h(−u) = 1. There is an automorphism Mh(u) defined by

Mh(u) : Bs,ε → Bs,ε, B(u) 7→ h(u)B(u). (3.10)
mhumhu
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sec:properties

3.2. Basic properties of twisted super Yangian. In this section, we collect some basic properties of

the twisted super Yangian Bs,ε.
thm:embedding

Proposition 3.3. The mapping

φ : B(u) → T (u)GεT−1(−u) (3.11)
eq:emd-beq:emd-b

defines an embedding which identify the twisted Yangian Bs,ε as a subalgebra of the super Yangian Ys.

Proof. The proof is essentially the same as that of [MR02, Theorem 3.1]. We first check that φ in-

duces a superalgebra homomorphism which we again denote by φ and then prove that this superalgebra

homomorphism φ is injective.

For brevity, we simply write G for Gε.

Set S(u) = T (u)GT−1(−u), then we immediately have

S(u)S(−u) = T (u)GT−1(−u)T (−u)GT−1(u) = 1

which verifies the unitary condition (3.7).

On the other hand, we also have

R(u− v)S1(u)R(u+ v)S2(v) = R(u− v)T1(u)G1T
−1
1 (−u)R(u+ v)T2(v)G2T

−1
2 (−v)

(2.9)
= R(u− v)T1(u)G1T2(v)R(u+ v)T−1

1 (−u)G2T
−1
2 (−v)

= R(u− v)T1(u)T2(v)G1R(u+ v)G2T
−1
1 (−u)T−1

2 (−v)
(2.4)
= T2(v)T1(u)R(u− v)G1R(u+ v)G2T

−1
1 (−u)T−1

2 (−v)
(3.2)
= T2(v)T1(u)G2R(u+ v)G1R(u− v)T−1

1 (−u)T−1
2 (−v)

(2.4)
= T2(v)T1(u)G2R(u+ v)G1T

−1
2 (−v)T−1

1 (−u)R(u− v)

= T2(v)G2T1(u)R(u+ v)T−1
2 (−v)G1T

−1
1 (−u)R(u− v)

(2.9)
= T2(v)G2T

−1
2 (−v)R(u+ v)T1(u)G1T

−1
1 (−u)R(u− v)

= S2(v)R(u+ v)S1(u)R(u− v).

Therefore, S(u) also satisfies the reflection equation (3.6).

Then we show that φ is injective. Introduce the filtration on Ys defined by deg1 t
(r)
ij = r, see [Gow07],

and a similar filtration on Bs,ε by setting deg1 b
(r)
ij = r. Note that for the matrix elements of S(u), we

have

sij(u) = εiδij +
∑
r>0

s
(r)
ij u

−r =

κ∑
a=1

εatia(u)t
′
aj(−u). (3.12)

eq:embed-expleq:embed-expl

It follows from (2.8) that the degree of s
(r)
ij is at most r. Therefore φ preserves the filtration and hence

induces a homomorphism of the associated graded superalgebras

φ : gr1Bs,ε → gr1Ys.

Denote by t̄
(r)
ij the image of t

(r)
ij in the r-th component of gr1Ys.

It is clear from (2.2) that gr1Ys is supercommutative, and moreover it follows from [Gow07, Theorem

1] that these elements t̄
(r)
ij are algebraically independent generators (in the super sense). It is also clear

that gr1Bs,ε is supercommutative. Denote by b̄
(r)
ij the image of b

(r)
ij in the r-th component of gr1Bs,ε. Due
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to the unitary condition (3.4), the elements

b̄
(2p−1)
ij , if εi = εj ,

b̄
(2p)
ij , if εi ̸= εj ,

(3.13)
eq:ind-generator-beq:ind-generator-b

for 1 ⩽ i, j ⩽ κ and p ∈ Z>0, generate the superalgebra gr1Bs,ε. By (3.12) and (2.8), we find that

φ : b̄
(r)
ij 7→ ((−1)r−1εi + εj)t̄

(r)
ij + · · · . (3.14)

eq:graded-generatorseq:graded-generators

Here · · · stands for a linear combination of monomials in t̄
(p)
ab with p < r for various 1 ⩽ a, b ⩽ κ.

therefore, the elements in (3.13) are algebraically independent, completing the proof. □

We immediately have the following PBW-type theorem for the twisted super Yangian Bs,ε.
cor:PBW

Corollary 3.4. Given any total ordering on the elements

b
(2p−1)
ij , if εi = εj ,

b
(2p)
ij , if εi ̸= εj ,

(3.15)

for 1 ⩽ i, j ⩽ κ and p ∈ Z>0, the ordered monomials in these elements, containing no second or higher

order powers of the odd generators, form a basis of the twisted super Yangian Bs,ε.

Thanks to Proposition 3.3, the twisted super Yangian is identified with a subalgebra of Ys by identifying

bij(u) with sij(u). As the twisted super Yangians of types AI and AII, Bs,ε is also a coideal subalgebra

of Ys.
prop:coproduct

Proposition 3.5. The subalgebra Bs,ε is a left coideal subalgebra in Ys,

∆(bij(u)) =

κ∑
a,c=1

tia(u)t
′
cj(−u)⊗ bac(u)(−1)(|c|+|j|)(|a|+|c|). (3.16)

eq:b-copro-in-teq:b-copro-in-t

Proof. Note that ∆ is a superalgebra homomorphism. One finds

∆(t′ij(u)) =

κ∑
a=1

t′aj(u)⊗ t′ia(u)(−1)(|a|+|j|)(|i|+|a|).

Then the statement follows from a straightforward computation. □

Let θ be the involution of glsm|n sending eij to εiεjeij and (glsm|n)
θ the fixed point Lie subalgebra

of glsm|n under θ. Note that θ depends on the diagonal matrix Gε which we shall not write explicitly.

Then (glsm|n, (gl
s
m|n)

θ) is a (super)symmetric pair of type AIII, cf. [She22]. Write glsm|n = k + p as the

(±1)-eigenspace decomposition with respect to θ. In particular,

k = (glsm|n)
θ ∼= glm1|n1

⊕ glm2|n2
,

where

m1 = #{i | si = εi = 1, 1 ⩽ i ⩽ κ}, n1 = #{i | − si = εi = 1, 1 ⩽ i ⩽ κ},
m2 = #{i | si = −εi = 1, 1 ⩽ i ⩽ κ}, n2 = #{i | si = εi = −1, 1 ⩽ i ⩽ κ}.

Clearly, a basis of k is given by all eij for 1 ⩽ i, j ⩽ κ and εi = εj , while a basis of k is given by all eij for

1 ⩽ i, j ⩽ κ and εi ̸= εj .

Extend the involution θ on glsm|n to θ̂ on glsm|n[x] by sending

θ̂(gxk) = θ(g)(−x)k,
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for g ∈ glsm|n and k ∈ Z⩾0. Let gl
s
m|n[x]

θ̂ be the fixed point subalgebra of glsm|n[x] under θ̂. Then we have

glsm|n[x]
θ̂ = (k⊗ C[x2])

⊕
(p⊗ xC[x2]).

There is also another filtration of Ys defined by setting deg2 t
(r)
ij = r − 1. It is well known [Gow07]

that the associated graded superalgebra gr2Ys is the universal enveloping superalgebra U(glm|n[x]) and

the correspondence is given by

U(glm|n[x]) → gr2 Ys, eijx
r 7→ sit̄

(r+1)
ij . (3.17)

eq:grisoeq:griso

Regard Bs,ε as a subalgebra of Ys via Proposition 3.3. Then we have the filtration on Bs,ε given by

deg2 b
(r)
ij = r − 1. Let gr2Bs,ε be the associated graded superalgebra.

prop:limit

Proposition 3.6. The twisted super Yangian Bs,ε is a deformation of U(glsm|n[x]
θ̂),

gr2Bs,ε
∼= U(glsm|n[x]

θ̂).

Proof. For r ∈ Z⩾0, let b̄
(r+1)
ij be the image of b

(r+1)
ij in the r-th component of gr2Bs,ε. It follows from

the proof of Proposition 3.3 that under the isomorphism (3.17),

si((−1)r−1εi + εj)eijx
r−1 7→ ((−1)r−1εi + εj)t̄

(r)
ij = b̄

(r)
ij .

Note that U(glsm|n[x]
θ̂) (resp. gr2Bs,ε) is generated by ((−1)r−1εi+εj)eijx

r−1 (resp. b̄
(r)
ij ), for 1 ⩽ i, j ⩽ κ

and r ∈ Z>0, the proposition follows. □

4. Highest weight representations
sec:reps

In this section, we discuss the highest representations of the twisted super Yangian Bs,ε.

4.1. Highest weight representations. Similar to [MR02], we define the highest weight representation

of Bs,ε as follows.

Definition 4.1. A representation V of Bs,ε is called highest ℓs,ε-weight if there exists a nonzero vector

η ∈ V such that V is generated by η and η satisfies

bij(u)η = 0, 1 ⩽ i < j ⩽ κ,
bii(u)η = µi(u)η, 1 ⩽ i ⩽ κ,

(4.1)
eq:highest-Beq:highest-B

where µi(u) ∈ εi + u−1C[[u−1]]. The vector η is called a highest ℓs,ε-weight vector of V and the tuple

µ(u) = (µi(u))1⩽i⩽κ is the highest ℓs,ε-weight of V .
eg:1-dim

Example 4.2. For any γ ∈ C, there exists a one-dimensional module Cγ := Cηγ generated by a highest

ℓs,ε-weight vector ηγ such that

bij(u)ηγ = δij
εiu+ γ

u− γ
ηγ . □

We have the following standard statements.

By the relations (3.3), we have

[b
(1)
ij , bkl(u)] = (−1)|i||j|+|i||k|+|j||k|(εi + εj)(δkjbil(u)− δilbkj(u)).

In particular, we have [
siεib

(1)
ii /2, bkl(u)

]
= δkibil(u)− δilbkj(u). (4.2)

eq:bii-weightbeq:bii-weightb

Therefore, the operators siεib
(1)
ii /2 are pairwise commuting.
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We say that a Bs,ε-module V has a glsm|n-weight subspace decomposition if it possesses a common

eigenspace decomposition for the commuting operators b
(1)
ii , 1 ⩽ i ⩽ κ. We say that a vector v ∈ V has

weight w = (w1, . . . ,wκ) if
1

2
siεib

(1)
ii v = wiv, 1 ⩽ i ⩽ κ.

Denote by (V )w the weight subspace of V with weight w.

Note that under the identification (3.12), we have

b
(1)
ii = 2εit

(1)
ii = 2siεieii.

Therefore, the definition is compatible with (2.15) if we consider a Ys-module as a Bs,ε-module by re-

striction. For a highest ℓs,ε-weight µ(u), we define a glsm|n-weight ϖ(µ(u)), similar to (2.15), associated

to it by the rule

ϖ(µ(u))(eii) =
1

2
siεiµi,1, (4.3)

varpi2varpi2

where µi,1 is the coefficient of u−1 in the series µi(u). Then a highest ℓs,ε-weight vector of glsm|n-weight

ϖ(µ(u)).
lem:wt-changeb

Lemma 4.3. We have

b
(r)
ij (V )w ⊂ (V )w+ϵi−ϵj ,

for 1 ⩽ i, j ⩽ κ, and r ∈ Z>0.

Proof. The lemma follows from (4.2) by a direct computation. □

Thus, we have the following corollary of Corollary 3.4 and Lemma 4.3.
cor:wt-changeb

Corollary 4.4. If V is a Bs,ε-module of highest ℓs,ε-weight µ(u), then V has a glsm|n-weight subspace

decomposition. Moreover, its highest ℓs,ε-weight vector has weight ϖ(µ(u)) and the other weight vectors

have weights that are strictly smaller (with respect to ⩾s defined in §2.1) than ϖ(µ(u)). □

Let V be a representation of Bs,ε. Set

V ◦ = {η ∈ V | bij(u)η = 0, 1 ⩽ i < j ⩽ κ}.
lem:nontrivial

Lemma 4.5. If V is a finite-dimensional representation of Bs,ε, then V
◦ is nontrivial.

Proof. Since the operators siεib
(1)
ii /2 are pairwise commuting and hence have at least a common eigenvector

η̃ ̸= 0 in V . Suppose V ◦ = 0, then there exists an infinite sequence of nonzero vectors in V ,

η̃, b
(r1)
i1j1

η̃, b
(r2)
i2j2

b
(r1)
i1j1

η̃, · · · ,

where ik < jk and rk > 0 for all k ∈ Z>0. It follows from Lemma 4.3 and Corollary 4.4 that the above

vectors have different glsm|n-weights. Therefore, they must be linearly independent and hence we obtain

a contradiction as V is finite-dimensional, completing the proof. □

Throughout the paper, for X,X ′ ∈ Bs,ε, we shall write X ≡ X ′ if X −X ′ belongs to the left ideal of

Bs,ε generated by the coefficients of bij(u) for 1 ⩽ i < j ⩽ κ.
lem:invariant

Lemma 4.6. The space V ◦ is invariant under the operators brr(u), for 1 ⩽ r ⩽ κ.

Proof. We prove bij(u)brr(v) ≡ 0 for 1 ⩽ i < j ⩽ κ and 1 ⩽ r ⩽ κ by a reverse induction on r.

For the base case r = κ, it is immediate from (3.3) that bij(u)bκκ(v) ≡ 0 for i < j < κ. Similarly, for

i < κ, we obtain

biκ(u)bκκ(v) ≡
(−1)|i||j|+|i||k|+|j||k|

u+ v
biκ(u)bκκ(v),

which implies biκ(u)bκκ(u) ≡ 0. Therefore, the base case is established.
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Now let r < κ. For i < j and i < k, it follows from (3.3) that

sjbij(u)bjk(v) ≡
1

u+ v

κ∑
a=k

bia(u)bak(v). (4.4)
lem:commun-1lem:commun-1

Note that the right hand side of (4.4) is independent of j. Therefore, for j and j′ such that i < j, j′, we

have

sjbij(u)bjk(v) ≡ sj′bij′(u)bj′k(v). (4.5)
lem:commun-2lem:commun-2

In the following, we always assume that i < j. We have four cases.

(1) The case i < r and j ̸= r. It is straightforward from (3.3) that bij(u)brr(v) ≡ 0.

(2) The case i < r and j = r. By (4.4) and (4.5), we also have

srbir(u)brr(v) ≡
sr

u+ v
bir(u)brr(v)

κ∑
a=r

sa,

which gives bir(u)brr(v) ≡ 0.

(3) The case r < i < j. Using (3.3) for [brr(v), bij(u)], we have

bij(u)brr(v) ≡ 1

u2 − v2

( κ∑
a=j

bia(u)baj(v)−
κ∑

a=j

bia(v)baj(u)
)

(4.5)
≡ sj

u2 − v2
(bij(u)bjj(v)− bij(v)bjj(u))

κ∑
a=j

sa.

Thus, bij(u)brr(v) ≡ 0 as bij(u)bjj(v) ≡ bij(v)bjj(u) ≡ 0 by induction hypothesis.

(4) The case r = i < j. By (3.3), we have

srbrj(u)brr(v) ≡
1

u− v
(brj(u)brr(v)− brj(v)brr(u))−

1

u+ v

κ∑
a=j

bra(v)baj(u).

Note that by (4.5), sabra(v)baj(u) ≡ sjbrj(v)bjj(u) ≡ 0 for j ⩽ a ⩽ κ by induction hypothesis.

We obtain that
u− v − sr
u− v

brj(u)brr(v) +
sr

u− v
brj(v)brr(u) ≡ 0. (4.6)

lem:commun-3lem:commun-3

Interchanging u and v, we also have

− sr
u− v

brj(u)brr(v) +
u− v + sr
u− v

brj(v)brr(u) ≡ 0. (4.7)
lem:commun-4lem:commun-4

The system of equations (4.6) and (4.7) has only zero solution, therefore we conclude that

brj(u)brr(v) ≡ 0.

The proof now is complete. □
lem:commute

Lemma 4.7. All the operators brr(u), 1 ⩽ r ⩽ κ, on V ◦ commute.

Proof. For any 1 ⩽ r ⩽ κ, it follows from (3.3) that(
1− sr

u+ v

)
[brr(u), brr(v)] ≡

sr
u+ v

ιr(u, v), (4.8)
lem:commun-5lem:commun-5

where

ιr(u, v) =
κ∑

a=r+1

(bra(u)bar(v)− bra(v)bar(u)). (4.9)
lem:commun-6lem:commun-6

Again by (3.3), for a > r, we have

bra(u)bar(v) ≡
sa

u− v
(baa(u)brr(v)− baa(v)brr(u)) +

sa
u+ v

( κ∑
c=r

brc(u)bcr(v)−
κ∑

c=a

bac(v)bca(u)
)
.
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Switching u and v and taking the difference, we obtain

bra(u)bar(v)− bra(v)bar(u)

≡ sa
u+ v

(
[brr(u), brr(v)] + [baa(u), baa(v)] + ιr(u, v) + ιa(u, v)

)
.

Summing over a, we obtain

(u+ v − ρr+1)ιr(u, v) ≡ ρr+1[brr(u), brr(v)] +
κ∑

a=r+1

sa

(
[baa(u), baa(v)] + ιa(u, v)

)
(4.10)

lem:commun-7lem:commun-7

Using (4.8) and (4.10), one easily shows that [brr(u), brr(v)] ≡ 0 and ιr(u, v) ≡ 0 by a reverse induction

on r. Therefore, if i < r, it follows from (3.3) that

[bii(u), brr(v)] ≡ − 1

u2 − v2

(
[brr(u), brr(v)] + ιr(u, v)

)
≡ 0.

Hence we proved that all the operators brr(u), 1 ⩽ r ⩽ κ, on V ◦ commute. □

Now we are ready to prove the main result of this subsection.

Theorem 4.8. Every finite-dimensional irreducible representation V of the twisted super Yangian Bs,ε

is a highest ℓs,ε-weight representation. Moreover, V contains a unique (up to proportionality) highest

ℓs,ε-weight vector.

Proof. By Lemma 4.5, V ◦ is nontrivial. Hence it follows from Lemmas 4.6, 4.7 that V ◦ contains a common

eigenvector η ̸= 0 for all operators brr(u), 1 ⩽ r ⩽ κ. Therefore, the vector η satisfies (4.1) for some

formal series µi(u).

Consider the submodule Bs,εη in V , as V is irreducible, we conclude that Bs,εη coincides with V .

The uniqueness of η (up to proportionality) follows from Corollary 3.4 and the weight subspaces of the

operators siεib
(1)
ii /2 used in the proof of Lemma 4.5. □

4.2. Verma modules. For any κ-tuple µ(u) = (µi(u))1⩽i⩽κ, where µi(u) ∈ εi + u−1C[[u−1]], denote

by M(µ(u)) the quotient of Bs,ε by the left ideal generated by all coefficients of the series bij(u), for

1 ⩽ i < j ⩽ κ, and bii(u) − µi(u), for 1 ⩽ i ⩽ κ. We call M(µ(u)) the Verma module with highest

ℓs,ε-weight µ(u).

The Verma module M(µ(u)) may be trivial due to nontrivial relations. If M(µ(u)) is nontrivial, then

denote by V (µ(u)) the unique irreducible quotient. Clearly, any irreducible highest ℓs,ε-weight module of

Bs,ε with highest ℓs,ε-weight µ(u) is isomorphic to V (µ(u)).

In the rest of this subsection, we discuss the sufficient and necessary condition for M(µ(u)) being

nontrivial.

Before stating and proving the theorem, we prepare a few lemmas that will be useful. For each

1 ⩽ i ⩽ κ, set

βi(u, v) =
κ∑

a=i

bia(u)bai(v). (4.11)
eq:betaeq:beta

Lemma 4.9. For 1 ⩽ i < κ, if u+ v = ρi+1, then we have

bii(u)bii(v) +
1

u− v

κ∑
a=i+1

sa(baa(u)bii(v)− baa(v)bii(u))

≡ bi+1,i+1(u)bi+1,i+1(v) +
1

u− v

κ∑
a=i+2

sa(baa(u)bi+1,i+1(v)− baa(v)bi+1,i+1(u)).
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Proof. For a > i, it follows from (3.3) that

bia(u)bai(v) ≡
sa

u− v

(
baa(u)bii(v)− baa(v)bii(u)

)
+

sa
u+ v

(
βi(u, v)− βa(v, u)

)
.

Summing over a, we have

u+ v − ρi+1

u+ v
βi(u, v) ≡ bii(u)bii(v)−

1

u+ v

κ∑
a=i+1

saβa(v, u)

+
1

u− v

κ∑
a=i+1

sa
(
baa(u)bii(v)− baa(v)bii(u)

)
.

(4.12)
eq:lem-nontrivial-1eq:lem-nontrivial-1

Interchanging u and v and taking the difference, we obtain

u+ v − ρi+1

u+ v

(
βi(u, v)− βi(v, u)

)
≡ 1

u+ v

κ∑
a=i+1

sa
(
βa(u, v)− βa(v, u)

)
, (4.13)

eq:lem-nontrivial-2eq:lem-nontrivial-2

where we also used that bii(u)bii(v) ≡ bii(v)bii(u), see Lemma 4.7. Note that βκ(u, v) ≡ βκ(v, u), one

easily shows by a reverse induction on i that βi(u, v) ≡ βi(v, u) using (4.13).

Applying (4.12) for i and i+ 1 and using βi(u, v) ≡ βi(v, u), one has

u+ v − ρi+1

u+ v

(
βi(u, v)− βi+1(u, v)

)
≡ bii(u) bii(v)− bi+1,i+1(u)bi+1,i+1(v) +

1

u− v

κ∑
a=i+1

sa
(
baa(u)bii(v)− baa(v)bii(u)

)
− 1

u− v

κ∑
a=i+2

sa
(
baa(u)bi+1,i+1(v)− baa(v)bi+1,i+1(u)

)
.

(4.14)
eq:lem-nontrivial-3eq:lem-nontrivial-3

Now the statement follows immediately if u+ v = ρi+1. □

It is convenient to set

b̃ii(u) := (2u− ρi+1)bii(u) +

κ∑
a=i+1

sabaa(u), 1 ⩽ i ⩽ κ. (4.15)
eq:def-tl-beq:def-tl-b

lem:b-in-t

Lemma 4.10. Regard Bs,ε as a subalgebra of Ys as in Proposition 3.3. Then we have

b̃ii(u) ≈
(
2εiu− εiρi+1 +ϖi+1

)
tii(u)t

′
ii(−u), (4.16)

where ϖi =
∑κ

j=i εjsj and A ≈ B if Aξ = Bξ for any highest ℓs-weight vector ξ.

Proof. For 1 ⩽ i ⩽ κ, set

ψi(u) =

κ∑
a=i

tia(u)t
′
ai(−u), ℘i(u) =

κ∑
a=i

t′ia(−u)tai(u).

By (2.10) and Proposition 2.7, for a > i, we have

tia(u)t
′
ai(−u) ≈

sa
2u

(ψi(u)− ℘a(u)), [tii(u), t
′
ii(−u)] ≈

si
2u

(ψi(u)− ℘i(u)). (4.17)
eq:inlemb-teq:inlemb-t

Therefore, we obtain

ψi(u) ≈ tii(u)t
′
ii(−u) +

κ∑
a=i+1

sa
2u

(ψi(u)− ℘a(u)), 1 ⩽ i ⩽ κ. (4.18)
eq:psieq:psi

Similarly, one has

℘i(u) ≈ t′ii(−u)tii(u) +
κ∑

a=i+1

sa
2u

(℘i(u)− ψa(u)), 1 ⩽ i ⩽ κ. (4.19)
eq:wpeq:wp
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By Proposition 2.7, we have tii(u)t
′
ii(−u) ≈ t′ii(−u)tii(u) for all 1 ⩽ i ⩽ κ. Also note that it follows from

(4.17) that ψκ(u) ≈ ℘κ(u). By a reverse induction and using (4.18), (4.19), one proves that ψi(u) ≈ ℘i(u)

for all 1 ⩽ i ⩽ κ. Hence, we have

(2u− ρi+1)℘i(u) ≈ 2utii(u)t
′
ii(−u)−

κ∑
a=i+1

sa℘a(u), 1 ⩽ i ⩽ κ. (4.20)
eq:inlem-b-t-wp2eq:inlem-b-t-wp2

On the other hand, it follows from (3.12) and (4.17) that

bii(u) ≈ εitii(u)t
′
ii(−u) +

κ∑
a=i+1

εasa
2u

(℘i(u)− ℘a(u)), 1 ⩽ i ⩽ κ. (4.21)
eq:inlem-b-t-wp1eq:inlem-b-t-wp1

Solving bii(u) in terms of tjj(u)t
′
jj(−u) from the system of equations (4.20) and (4.21), it is not hard to

see by a brute force computation that

(2u− ρi+1)bii(u) +
κ∑

a=i+1

sabaa(u) ≈
(
2εiu− εiρi+1 +ϖi+1

)
tii(u)t

′
ii(−u). □

Now we are ready to prove the main theorem of this subsection.
thmnontrivial

Theorem 4.11. The Verma module M(µ(u)) is nontrivial if and only if

µκ(u)µκ(−u) = 1, (4.22)
thm:nontrivial-Nthm:nontrivial-N

and for 1 ⩽ i < κ, the following conditions are satisfied

µ̃i(u)µ̃i(−u+ ρi+1) = µ̃i+1(u)µ̃i+1(−u+ ρi+1), (4.23)
thm:nontrivial-ithm:nontrivial-i

where

µ̃i(u) = (2u− ρi+1)µi(u) +
κ∑

a=i+1

saµa(u). (4.24)
eq:mu-tildeeq:mu-tilde

Proof. We first show that conditions (4.22) and (4.23) are necessary. By the unitary condition (3.4), we

have
κ∑

a=1

bκa(u)baκ(−u) = 1.

Then (4.22) follows from the above equation applied to the highest weight vector of V (µ(u)). Applying

Lemma 4.5 to the highest weight vector of V (µ(u)), we get

µi(u)µi(v) +
1

u− v

κ∑
a=i+1

sa
(
µa(u)µi(v)− µa(v)µi(u)

)
= µi+1(u)µi+1(v) +

1

u− v

κ∑
a=i+2

sa
(
µa(u)µi+1(v)− µa(v)µi+1(u)

)
,

where u+ v = ρi+1. It is not hard to see that the above equation is equivalent to conditions (4.23).

Conversely, suppose the conditions (4.22) and (4.23) are satisfied. We shall show that there exists a

highest ℓs-weight vector ξ of highest ℓs-weight λ(u) such that ξ is of highest ℓs,ε-weight µ(u). This proves

that the Verma module M(µ(u)) is non-trivial.

First, observe from Lemma 2.8 and (3.12) that bij(u)ξ = 0 for 1 ⩽ i < j ⩽ κ.
We construct λi(u) ∈ 1 + u−1C[[u−1]] inductively as follows. By (4.22), there exists λκ(u) ∈ 1 +

u−1C[[u−1]] such that

µκ(u) = εκλκ(u)/λκ(−u).
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Suppose we already have λj(u) for i < j ⩽ κ. Define

Λi(u) =
(2εi+1u− εi+1ρi+2 +ϖi+2)µ̃i(u)λi+1(u)

(2εiu− εiρi+1 +ϖi+1)µ̃i+1(u)λi+1(−u+ ρi+1)
.

Note that if εi = εi+1, then we have

2εi+1u− εi+1ρi+2 +ϖi+2 = 2εiu− εiρi+1 +ϖi+1; (4.25)
eq:good1eq:good1

if εi = −εi+1, then we have

2εi+1u− εi+1ρi+2 +ϖi+2 = 2εi(−u+ ρi+1)− εiρi+1 +ϖi+1. (4.26)
eq:good2eq:good2

Therefore, one easily checks that the condition (4.23) ensures that Λi(u)Λi(−u+ ρi+1) = 1. Hence there

exists λi(u) ∈ 1 + u−1C[[u−1]] such that Λi(u) = λi(u)/λi(−u+ ρi+1).

With our choice of λ(u), we have

µ̃i(u)

µ̃i+1(u)
=

(2εiu− εiρi+1 +ϖi+1)λi(u)λi+1(−u+ ρi+1)

(2εi+1u− εi+1ρi+2 +ϖi+2)λi+1(u)λi(−u+ ρi+1)

and µκ(u) = εκλκ(u)/λκ(−u). By Propositions 2.7, 2.9 and Lemma 4.10, one verifies that ξ is indeed of

highest ℓs,ε-weight µ(u). □

4.3. Tensor product of representations. Recall from Proposition 3.5 that Bs,ε is a left coideal sub-

algebra in Ys. Given a Ys-module L and a Bs,ε-module V , then L ⊗ V is a Bs,ε-module given by the

coproduct formula (3.16) in Proposition 3.5.

Let L = L(λ(u)) be a highest ℓs-weight module over Ys with a highest ℓs-weight vector ξ. Let

V = V (µ(u)) be a highest ℓs,ε-weight module over Bs,ε with a highest ℓs,ε-weight vector η. We end this

section by showing that ξ ⊗ η is a highest ℓs,ε-weight vector and calculating its highest ℓs,ε-weight.

Again we shall use the convenient notation A ≈ B if Aξ = Bξ.
lem:sum-T-

Lemma 4.12. For 1 ⩽ i < a ⩽ κ, we have

(2u− ρi+1)tia(u)t
′
ai(−u) +

a∑
c=i+1

sctca(u)t
′
ac(−u) ≈ satii(u)t

′
ii(−u).

Proof. By (4.17), one obtains

(2u− ρi+1)tia(u)t
′
ai(−u)+

a−1∑
c=i+1

sctca(u)t
′
ac(−u)

≈ sa
2u

(
(2u− ρi+1)(℘i(u)− ℘a(u)) +

a∑
c=i+1

sc(℘c(u)− ℘a(u))
)

≈ sa
2u

(
(2u− ρi+1)℘i(u)− (2u− ρa+1)℘a(u) +

a∑
c=i+1

sc℘c(u)
)

≈ sa
2u

(
2utii(u)t

′
ii(−u)− 2utaa(u)t

′
aa(−u)

)
,

where the last equality follows from (4.20). Now the lemma follows. □
prop:tensor-product

Proposition 4.13. We have bij(u)(ξ ⊗ η) = 0, 1 ⩽ i < j ⩽ κ, and

b̃ii(u)(ξ ⊗ η) = λi(u)λ
′
i(−u)µ̃i(u)(ξ ⊗ η), 1 ⩽ i ⩽ κ,

where λ′i(u) and µ̃i(u) are defined in (2.24) and (4.24), respectively.
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Proof. It is easily seen from Lemma 2.8 and (3.16) that bij(u)(ξ ⊗ η) = 0.

Again we write A ≈ B if A(ξ ⊗ η) = B(ξ ⊗ η). It follows from Lemma 2.8 that

∆(bii(u)) ≈
κ∑

a=i

(
tia(u)t

′
ai(−u)⊗ baa(u)

)
(ξ ⊗ η).

Therefore,

∆(b̃ii(u)) ≈ (2u− ρi+1)
κ∑

a=i

tia(u)t
′
ai(−u)⊗ baa(u) +

κ∑
a=i+1

sa

κ∑
c=a

tac(u)t
′
ca(−u)⊗ bcc(u)

=

κ∑
a=i

(
(2u− ρi+1)tia(u)t

′
ai(−u) +

a∑
c=i+1

sctca(u)t
′
ac(−u)

)
⊗ baa(u)

≈ (2u− ρi+1)tii(u)t
′
ii(−u)⊗ bii(u) +

κ∑
a=i+1

satii(u)t
′
ii(−u)⊗ baa(u)

= tii(u)t
′
ii(−u)⊗

(
(2u− ρi+1)bii(u) +

κ∑
a=i+1

sabaa(u)
)
= tii(u)t

′
ii(−u)⊗ b̃ii(u).

Here we applied Lemma 4.12 in the third equality. Now the statement follows. □
eg:tensor-1

Example 4.14. Recall the one dimensional Bs,ε-module Cγ = Cηγ from Example 4.2 for γ ∈ C. Let

L = L(λ(u)) be a highest ℓs-weight module over Ys with a highest ℓs-weight vector ξ. Then by Proposition

4.13 we have

b̃ii(u)(ξ ⊗ ηγ) =
(2εiu− εiρi+1 +ϖi+1 + 2γ)u

u− γ
λi(u)λ

′
i(−u)(ξ ⊗ ηγ),

cf. Lemma 4.10. □

5. Classifications in rank 1
sec:rank1

In this section, we study finite-dimensional representations of Bs,ε when κ = 2.

5.1. Non-super case. In this section, we investigate the finite-dimensional irreducible representations

of twisted super Yangian of the small rank case κ = 2. Note that the case s = (1, 1) has already been

studied in [MR02, Propositions 4.4, 4.5] via identifying Bs,ε with (Olshanski’s) twisted Yangians Y(sp2)

and Y(so2) of types AI and AII.
prop:iff-even

Proposition 5.1 ([MR02]). Suppose s = (1, 1).

(1) If ε = (1, 1), then the Bs,ε-module V (µ(u)) is finite-dimensional if and only if there exists a monic

polynomial P (u) such that P (−u+ 2) = P (u) and

µ̃1(u)

µ̃2(u)
=
P (u+ 1)

P (u)
.

(2) If ε = (1,−1), then the Bs,ε-module V (µ(u)) is finite-dimensional if and only if there exist γ ∈ C
and a monic polynomial P (u) such that P (−u+ 2) = P (u), P (γ) ̸= 0, and

µ̃1(u)

µ̃2(u)
=
P (u+ 1)

P (u)
· γ − u

γ + u− 1
.

In this case, the pair (P (u), γ) is unique.
prop:con-even

Proposition 5.2 ([MR02]). Suppose = (1, 1).

(1) If ε = (1, 1), then any finite-dimensional irreducible Bs,ε-module V (µ(u)) is isomorphic to the

restriction of a Y(gl2)-module L, where L is some finite-dimensional irreducible Y(gl2)-module.
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(2) If ε = (1,−1), then any finite-dimensional irreducible Bs,ε-module V (µ(u)) is isomorphic to L⊗
Cγ, where L is some finite-dimensional irreducible Y(gl2)-module and Cγ is some one-dimensional

Bs,ε-module defined in Example 4.2 with γ ∈ C.

5.2. Super case. In the rest of this section, we establish super analogous results to the previous propo-

sitions when s = (1,−1) or (−1, 1). Our main results in this subsection are the following.
prop:rank1

Proposition 5.3. If s is such that s1 ̸= s2, then the Bs,ε-module V (µ(u)) is finite-dimensional if and

only if there exists a monic polynomial P (u) such that

µ̃1(u)

µ̃2(u)
= ε1ε2(−1)degP

P (u)

P (−u+ s2)
.

Proof. The ⇐= part follows from Theorem 2.4 and Theorem 6.1 below as V (µ(u)) can be obtained as a

quotient of the restriction of a finite-dimensional irreducible Ys-module.

To show the =⇒ part, note that due to the condition (4.23), such a polynomial P (u) exists provided

that µ̃1(u)/µ̃2(u) or alternatively µ1(u)/µ2(u) is an expansion of a rational function in u at u = ∞.

We will work on

xij(u) = εiδij +
∑
r>0

x
(r)
ij u

−r := bij(u+ s2/2)

and the case s = (1,−1) since the general case s = (−1, 1) is similar by inserting the signs at suitable

positions or using certain isomorphisms.

Using (3.3), we have

[b21(u), b22(v)] =
−1

u− v
(b21(u)b22(v)− b21(v)b22(u)) +

1

u+ v
(b21(v)b11(u) + b22(v)b21(u)),

which gives

u+ v + 1

u+ v
b22(v)b21(u) = b21(u)b22(v)−

1

u+ v
b21(v)b11(u)

− 1

u− v
(b21(v)b22(u)− b21(u)b22(v)).

Substituting u→ u− 1/2, v → v − 1/2 and dividing both sides by (u+ v)/(u+ v − 1), we obtain

x22(v)x21(u) =x21(u)x22(v)−
1

v + u
(x21(v)x11(u) + x21(u)x22(v))

+
1

v − u
(x21(v)x22(u)− x21(u)x22(v)) +

1

v2 − u2
(x21(u)x22(v)− x21(v)x22(u)).

(5.1)
eq:new-beq:new-b

Taking the coefficients of u−kv−2 and v−2, we have

x
(2)
22 x

(k)
21 = x

(k)
21 (x

(2)
22 − 2x

(1)
22 + x

(0)
22 )− x

(1)
21 (x

(k)
11 − x

(k)
22 ), (5.2)

eq:k2eq:k2

x
(2)
22 x21(u) = x21(u)(x

(2)
22 − 2x

(1)
22 + x

(0)
22 )− x

(1)
21 (x11(u)− x22(u)). (5.3)

eq:just2eq:just2

Similarly, taking the coefficients of u−kv−3 and v−3, we have

x
(3)
22 x

(k)
21 = −2ε2x

(k+2)
21 + x

(k)
21 (x

(3)
22 − 2x

(2)
22 + x

(1)
22 )

− x
(2)
21 (x

(k)
11 − x

(k)
22 ) + x

(1)
21 (x

(k+1)
11 + x

(k+1)
22 − x

(k)
22 ), (5.4)

eq:k3eq:k3

x
(3)
22 x21(u) = −2ε2u

2x21(u) + x21(u)(x
(3)
22 − 2x

(2)
22 + x

(1)
22 )

− x
(2)
21 (x11(u)− x22(u)) + x

(1)
21 (ux11(u) + ux22(u)− x22(u)). (5.5)

eq:just3eq:just3

Denote by η the highest ℓs,ε-weight vector of V (µ(u)). Define the series λi(u) by

λi(u) =
∑
r⩾0

λiru
−r, i = 1, 2,
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where λir ∈ C satisfies x
(r)
ii η = λirη. In particular, λi0 = εi.

(1) The case ε1 = ε2. We first prove that for r > 0, the vector x
(2r)
21 η is a linear combination of vectors

x
(1)
21 η, x

(3)
21 η, · · · , x

(2r−1)
21 η.

We prove it by induction on k. Setting k = 0 in (5.4) and noticing that x
(0)
21 = 0, we have

(ε1 + ε2)x
(2)
21 = x

(1)
21 (x

(1)
11 + x

(1)
22 − ε2). (5.6)

eq:ind-baseeq:ind-base

Therefore, 2ε2x
(2)
21 η = (λ11 + λ21 − ε2)x

(1)
21 η. Now suppose that

x
(2r)
21 η = c1x

(1)
21 η + · · ·+ c2r−1x

(2r−1)
21 η (5.7)

eq:ind-hypoeq:ind-hypo

for some c1, · · · , c2r−1 ∈ C. Then applying (5.3) to x
(3)
22 (c1x

(1)
21 + · · ·+ c2k−1x

(2r−1)
21 )η and using (5.6), we

find that x
(3)
22 (c1x

(1)
21 + · · · + c2r−1x

(2r−1)
21 )η is a linear combination of vectors x

(1)
21 η, x

(2)
21 η, · · · , x

(2r+1)
21 η,

which is also a linear combination of vectors x
(1)
21 η, x

(3)
21 η, · · · , x

(2r−1)
21 η by (5.6) and (5.7). Similarly, by

(5.3), x
(3)
22 x

(2r)
21 η is equal to −2ε2x

(2r+2)
21 η plus a linear combination of vectors x

(1)
21 η, x

(3)
21 η. Thus, the claim

is proved.

Let ηr = x
(2r−1)
21 η for r ∈ Z>0. Since V (µ(u)) is finite-dimensional, there exists a minimal non-

negative integer k be the minimal nonnegative integer such that ηk+1 is a linear combination of the

vectors η1, · · · , ηk,
ηk+1 = c1η1 + · · ·+ ckηk. (5.8)

eq:pf-low-0eq:pf-low-0

Then for any r > k, one proves similarly as in the proof of the above claim that

ηr = ar1η1 + · · ·+ arkηk

for some ari ∈ C, where 1 ⩽ i ⩽ k. Therefore, there exist series ai(u) ∈ u1−2i(1 + C[[u−1]]), 1 ⩽ i ⩽ k, in

u−1 such that

x21(u)η = a1(u)η1 + a2(u)η2 + · · ·+ ak(u)ηk. (5.9)
eq:x21-etaeq:x21-eta

To simplify the notation, we use the following shorthand notation for these scalars,

Λ0 = λ22 − 2λ21 + ε2, Λ1 = λ23 − 2λ22 + λ21,

βr = λ2r − λ1r, θr = λ1,r+1 + λ2,r+1 − λ2r.

By (5.3) and (5.9), we have

x
(2)
22 x21(u)η =Λ0x21(u)η − (λ1(u)− λ2(u))η1

=Λ0(a1(u)η1 + a2(u)η2 + · · ·+ ak(u)ηk)− (λ1(u)− λ2(u))η1.
(5.10)

eq:pf-low-1eq:pf-low-1

On the other hand, by (5.2), we have

x
(2)
22

k∑
r=1

ar(u)ηk =

k∑
r=1

ar(u)x
(2)
22 x

(2r−1)
21 η =

k∑
r=1

ar(u)(Λ0ηr + β2r−1η1). (5.11)
eq:pf-low-2eq:pf-low-2

Comparing the coefficients of η1, it follows that

λ2(u)− λ1(u) =
r∑

k=1

β2k−1ak(u). (5.12)
eq:pf-low-3eq:pf-low-3

Recall that (5.6) implies x
(2)
21 η = 1

2θ0ε2η1. Similarly, by (5.5), we have

x
(3)
22 x21(u)η

=(−2ε2u
2 + Λ1)x21(u)η +

(
uλ1(u) + uλ2(u)− λ2(u) +

1

2
θ0ε2(λ2(u)− λ1(u))

)
η1

=(−2ε2u
2 + Λ1)

k∑
r=1

ar(u)ηr +
(
uλ1(u) + uλ2(u)− λ2(u) +

1

2
θ0ε2(λ2(u)− λ1(u))

)
η1.
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On the other hand, we have

x
(3)
22

k∑
r=1

ar(u)ηr =
k∑

r=1

ar(u)x
(3)
22 x

(2r−1)
21 η

=
k∑

r=1

ar(u)
(
− 2ε2ηr+1 + Λ1ηr +

1

2
θ0ε2β2r−1η1 + θ2r−1η1

)
.

Applying (5.8) to the above equality and comparing the coefficients of ηr for 1 < r ⩽ k, we obtain that

(−2ε2u
2 + Λ1)ar(u) = (−2ε2ar−1(u) + Λ1ar(u)− 2ε2crak(u)),

which reduces to

ar−1(u) = u2ar(u)− crak(u). (5.13)
eq:pf-low-4eq:pf-low-4

Hence, for any 1 ⩽ r ⩽ k, we have ar(u) = Pr(u)ak(u), where Pr(u) is a polynomial in u of degree

2(k − r). Finally, taking the coefficients of η1 and using (5.13), we conclude that(
u− 1

2
θ0ε2

)
λ1(u) +

(
u+

1

2
θ0ε2 − 1

)
λ2(u) = P(u)ak(u), (5.14)

eq:pf-low-5eq:pf-low-5

where P(u) is a polynomial in u of degree 2k. Note that (5.12) and (5.13) imply

λ2(u)− λ1(u) = P(u)ak(u), (5.15)
eq:pf-low-6eq:pf-low-6

where P(u) is a polynomial in u of degree at most 2k−2. It follows from (5.14) and (5.15) that λ1(u)/λ2(u)

is an expansion of a rational function in u at u = ∞, completing the proof for the case ε1 = ε2.

(2) The case ε1 ̸= ε2. The proof for this case is very similar to that of the previous case. The

difference is that one needs to use x
(2r)
21 η and x

(4)
22 x

(2r)
21 instead of x

(2r−1)
21 η and x

(2)
22 x

(2r−1)
21 , respectively, cf.

[Mol98, Proposition 6.1] as we have x
(1)
21 = 0 in this case. Then (5.15) is replaced with

(u2 + · · · )λ2(u)− (u2 + · · · )λ1(u) = P(u)ak(u),

where · · · stand for two different linear polynomials in u and P(u) is a polynomial in u of degree 2k + 2.

Note that in this case P(u) in (5.14) is of degree at most 2k. We omit the detail for this case. □

5.3. Preparations. In this subsection, we prepare ingredients to establish super analogue of Proposition

5.2 and always assume that s = (s1, s2) satisfies s1 ̸= s2.

We start with simple calculations for 2-dimensional evaluation modules. Let a and b be complex

numbers such that a+ b ̸= 0. Then the evaluation Ys-module L(a, b) is two dimensional. Let v+ be a

nonzero singular vector and set v− = e21v
+.

lemn2

Lemma 5.4. We have the following explicit action,

t11(u)v
+ =

u+ s1a

u
v+, t12(u)v

+ = 0,

t22(u)v
+ =

u− s1b

u
v+, t21(u)v

+ = −s1
u
v−,

t11(u)v
− =

u− s1 + s1a

u
v−, t21(u)v

− = 0,

t22(u)v
− =

u− s1 − s1b

u
v−, t12(u)v

− =
s1(a+ b)

u
v+,

t′11(u)v
+ =

u(u− s1 − s1b)

(u− s1 + s1a)(u− s1b)
v+, t′12(u)v

+ = 0,

t′22(u)v
+ =

u

u− s1b
v+, t′21(u)v

+ =
s1u

(u− s1 + s1a)(u− s1b)
v−,

t′11(u)v
− =

u

u− s1 + s1a
v+, t′12(u)v

− =
−s1(a+ b)u

(u− s1 + s1a)(u− s1b)
v+,
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t′22(u)v
− =

u(u+ s1a)

(u− s1 + s1a)(u− s1b)
v−, t′21(u)v

− = 0.

In particular, (u + s1 − s1a)(u + s1b)tij(u)t
′
kl(−u) and (u + s1 − s1a)(u + s1b)bij(u) act on L(a, b)

polynomially in u.

Proof. The formulas follow from straightforward computation and the second statement follows from the

formulas. □

We call two Bs,ε-modules V1, V2 are almost isomorphic if V1 is isomorphic to the module obtained

by pulling back V2 through an automorphism of the form Mh(u), see (3.10). In particular, the modules

V (µ(u)) and V (ν(u)) are almost isomorphic if and only if

µ̃i(u)

µ̃i+1(u)
=

ν̃i(u)

ν̃i+1(u)
, 1 ⩽ i < κ.

Similarly, one can define almost isomorphic Ys-modules. Then the modules L(λ(u)) and L(Λ(u)) are

almost isomorphic if and only if

λi(u)

λi+1(u)
=

Λi(u)

Λi+1(u)
, 1 ⩽ i < κ.

If V1, V2 are almost isomorphic, then we write V1 ≃ V2.

To understand the module structure of finite dimensional irreducible Bs,ε modules, it suffices to inves-

tigate these modules up to almost isomorphism.

We shall also need the dual modules. Let L be a finite-dimensional Ys-module. The dual L∗ of L is

the representation of Ys on the dual vector space of L defined as follows:

(y · ω)(v) := (−1)|ω||y|ω(Ω(y) · v), y ∈ Ys, ω ∈ L∗, v ∈ L,

where Ω is defined in (2.13). Let w be another finite-dimensional Ys-module. Then we have (L⊗W )∗ =

L∗ ⊗W ∗. Let L be a finite-dimensional Ys-module of highest ℓs-weight generated by a highest ℓs-weight

vector ζ. Let ζ∗ ∈ L∗ be the vector such that ζ∗(ζ) = 1 and ζ∗(v) = 0 for all v ∈ L with wt(v) ̸= wt(ζ).
cor dual weight

Corollary 5.5. Let V be a finite-dimensional Ys-module of highest ℓs-weight generated by a highest

ℓs-weight vector v of ℓs-weight ζ(u) = (ζi(u))1⩽i⩽κ. Then v∗ is of ℓs-weight ζ̂(u) = (ζ̂i(u))1⩽i⩽κ, where

ζ̂i(u) =
1

λi(−u+ ρi+1)

κ∏
k=i+1

λk(−u+ ρk)

λk(−u+ ρk+1)
.

Note that

Ω(bij(u)) =
κ∑

a=1

εa(−1)|i||a|+|a|+|a||j|+|j|+(|a|+|i|)(|a|+|j|)tja(u)t
′
ai(−u)

=

κ∑
a=1

εa(−1)|i||j|+|j|tja(u)t
′
ai(−u) = (−1)|i||j|+|j|bji(u).

This means that the subalgebra Bs,ε of Ys is stable under Ω and the restriction of Ω to Bs,ε yields an

anti-automorphism of Bs,ε.

Let V be a finite-dimensional Bs,ε-module. The dual V ∗ of V is the representation of Bs,ε on the dual

vector space of V ∗ defined as follows:

(y · ω)(v) := (−1)|ω||y|ω(Ω(y) · v), y ∈ Bs,ε, ω ∈ V ∗, v ∈ V.

Clearly, the dual C∗
γ of the one-dimensional module Cγ is isomorphic to Cγ .

Let L be a finite-dimensional Ys-module and V a finite-dimensional Bs,ε-module, then it is straight-

forward to verify that

(L⊗ V )∗ ∼= L∗ ⊗ V ∗.
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Fix k ∈ Z>0. Let (ai, bi) be a pair of complex numbers for each 1 ⩽ i ⩽ k. Consider the following

tensor product of evaluation Ys-modules,

L(a, b) = L(a1, b1)⊗ · · · ⊗ L(ak, bk).
lem:dual

Lemma 5.6. We have

L(a, b)∗ ≃ L(b1 + 1,a1 − 1)⊗ · · · ⊗ L(bk + 1,ak − 1)

as Ys-modules. Moreover, we have(
L(a, b)⊗ Cγ

)∗ ≃ L(b1 + 1,a1 − 1)⊗ · · · ⊗ L(bk + 1,ak − 1)⊗ Cγ

as Bs,ε-modules.

Proof. The lemma follows from Corollary 5.5 by a direct computation. □

Though we work with the case κ = 2, the dual modules can be generalized to arbitrary κ and s.

5.4. The case ε1 = ε2. Now we assume further that ε1 = ε2. Suppose V (µ(u)) is finite dimensional,

then by Proposition 5.3 we have

µ̃1(u)

µ̃2(u)
= (−1)degP (u) P (u)

P (−u− s1)
. (5.16)

P-defP-def

We assume further that P (u) and P (−u − s1) are relatively prime. Otherwise, we may cancel common

factors and obtain a polynomial of smaller degree. Then P (−s1/2) ̸= 0. Suppose

P (u) = (u+ s1a1)(u+ s1a2) · · · (u+ s1al)

where l = degP (u) and ai ∈ C for 1 ⩽ i ⩽ l. We have ai ̸= 1/2.

Set k = ⌊ l+1
2 ⌋. Introduce k pair of complex numbers (ai, bi), where ai are defined as above while bi

are defined as follows,

• if l is even, then bi = ai+k − 1 for 1 ⩽ i ⩽ k;

• if l is odd, then bi = ai+k − 1 for 1 ⩽ i < k and bk = −1
2 .

Then we have

P (u)

P (−u− s1)
= (−1)degP (u)

k∏
i=1

(u+ s1ai)(u+ s1 + s1bi)

(u− s1bi)(u+ s1 − s1ai)
. (5.17)

P-factorP-factor

The only possible cancellation is when l is odd, then

u+ s1 + s1bk = u− s1bk.

Note that we have

ai + bi ̸= 0, ai + bj ̸= 0, ai + aj ̸= 1, bi + bj ̸= 1 (5.18)
notequaltonotequalto

for all 1 ⩽ i ̸= j ⩽ k.

We consider the following tensor product of evaluation Ys-modules,

L(a, b) = L(a1, b1)⊗ · · · ⊗ L(ak, bk).

For each 1 ⩽ i ⩽ k, L(ai, bi) is two dimensional. We set v+i to be one of its nonzero singular vector and

v−i = e21v
+
i . Moreover, we assume that v+i are even. We also set v+ = v+1 ⊗ · · · ⊗ v+k . We regard L(a, b)

as a Bs,ε-module by restriction.
prop=

Proposition 5.7. If ε = (ε1, ε2) satisfies ε1 ̸= ε2, then the Bs,ε-module L(a, b) is irreducible. Moreover,

the finite-dimensional irreducible Bs,ε-module V (µ(u)) is almost isomorphic to L(a, b).
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Proof. It follows from the proof of Theorem 4.11 that the vector v+ is a highest ℓs,ε-weight vector. Suppose

the corresponding ℓs,ε-weight is ν(u) = (ν1(u), ν2(u)). Then it follows from Proposition 2.9, Lemma 4.10,

and Lemma 5.4, , that

ν̃1(u) = 2ε1u
k∏

i=1

(u+ s1ai)(u+ s1 + s1bi)

(u+ s1 − s1ai)(u+ s1bi)
, ν̃2(u) = 2ε2u

k∏
i=1

u− s1bi
u+ s1bi

.

Therefore, by (5.16) and (5.17), we have

ν̃1(u)

ν̃2(u)
=

k∏
i=1

(u+ s1ai)(u+ s1 + s1bi)

(u− s1bi)(u+ s1 − s1ai)
= (−1)degP (u) P (u)

P (−u− s1)
=
µ̃1(u)

µ̃2(u)
.

Thus, it suffices to prove that the Bs,ε-module L(a, b) is irreducible.

We claim that any vector η ∈ L(a, b) satisfying b12(u)η = 0 is proportional to v+. We prove the claim

by induction on k. The case k = 1 is obvious by Lemma 5.4. Then we assume that k ⩾ 2. We write any

such nonzero vector η in the following form,

η =

1∑
r=0

(e21)
rv+1 ⊗ ηr = v+1 ⊗ η0 + v−1 ⊗ η1,

where η0, η1 ∈ L(a2, b2) ⊗ · · · ⊗ L(ak, bk). We first prove that η1 = 0. Suppose η1 ̸= 0. Then it follows

from Proposition 3.5 that

∆(b12(u)) = t11(u)t
′
12(−u)⊗ b11(u) + t11(u)t

′
22(−u)⊗ b12(u)

− t12(u)t
′
12(−u)⊗ b21(u) + t12(u)t

′
22(−u)⊗ b22(u).

Applying b12(u) to η using this coproduct, it follows from b12(u)η = 0 that(
t11(u)t

′
22(−u)⊗ b12(u)

)
(v−1 ⊗ η1) = 0

by taking the coefficient of v−1 . Therefore, we have

−(u− s1 + s1a1)(u− s1a1)

(u+ s1 − s1a1)(u+ s1b1)
v−1 ⊗ b12(u)η1 = 0,

which implies that b12(u)η1 = 0. By induction hypothesis, the vector η1 must be proportional to v+2 ⊗
· · · ⊗ v+k . Then taking the coefficient of v+ in b12(u)η = 0, we have

0 =
u+ s1a1

u+ s1b1
v+1 ⊗ b12(u)η0 + t12(u)t

′
22(−u)v−1 ⊗ b22(u)η1 + t11(u)t

′
12(−u)v−1 ⊗ b11(u)η1.

Note that by (4.15) we have b̃11(u) = (2u+ s1)b11(u)− s1b22(u) and b̃22(u) = 2ub22(u). We deduce from

the above equation and Lemma 4.10 that

0 =
u+ s1a1

u+ s1b1
v+1 ⊗ b12(u)η0 +

2ε2s1u(a1 + b1)

(u+ s1b1)(2u+ s1)

k∏
i=2

u− s1bi
u+ s1bi

v+1 ⊗ η1

+
2ε1s1u(a1 + b1)(u+ s1a1)

(u+ s1 − s1a1)(u+ s1b1)(2u+ s1)

k∏
i=2

(u+ s1ai)(u+ s1 + s1bi)

(u+ s1 − s1ai)(u+ s1bi)
v+1 ⊗ η1.

Multiplying both sides by (2u+ s1)
∏k

i=1

(
(u+ s1 − s1ai)(u+ s1bi)

)
, we have

0 = (2u+ s1)(u+ s1a1)(u+ s1 − s1a1)v
+
1 ⊗

k∏
i=2

(
(u+ s1 − s1ai)(u+ s1bi)

)
b12(u)η0

+ 2ε2s1u(a1 + b1)(u+ s1 − s1a1)
k∏

i=2

(
(u+ s1 − s1ai)(u− s1bi)

)
v+1 ⊗ η1
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+ 2ε1s1u(a1 + b1)(u+ s1a1)
k∏

i=2

(
(u+ s1ai)(u+ s1 + s1bi)

)
v+1 ⊗ η1.

Due to Lemma 5.4, the operator
∏k

i=2

(
(u+ s1 − s1ai)(u+ s1bi)

)
b12(u) acts on η0 polynomially in u.

(1) If a1 ̸= 0, then setting u = −s1a1, we obtain

2s1a1(a1 + b1)(2a1 − 1)
k∏

i=2

(a1 + ai − 1)(a1 + bi)v
+
1 ⊗ η1 = 0.

Thus, by (5.18), we conclude that η1 = 0.

(2) If a1 = 0, then setting u = s1a1 − s1, we get

2s1(a1 − 1)(a1 + b1)(2a1 − 1)
k∏

i=2

(a1 + ai − 1)(a1 + bi)v
+
1 ⊗ η1 = 0.

Again by (5.18), we conclude that η1 = 0.

Therefore, we must have b12(u)η0 = 0 which again by induction hypothesis that η0 is proportional to

v2 ⊗ · · · ⊗ v+k . Thus the claim is proved.

Suppose now that M is a submodule of L(a, b). Then M must contain a nonzero vector η such that

b12(u)η = 0, see Lemma 4.5. The above argument thus shows that M contains the vector v+. It remains

to prove the cyclic span K = Bs,εv
+ coincides with L(a, b). By Lemma 5.6, the dual Bs,ε-module

L(a, b)∗ is almost isomorphic to the restriction of the Ys-module

L(b1 + 1,a1 − 1)⊗ · · · ⊗ L(bk + 1,ak − 1).

Moreover, the highest ℓs,ε vector ζ∗i of the module L(bi + 1,ai − 1) ≃ L(ai, bi)
∗ can be identified with

the elements of L(ai, bi)
∗ such that ζ∗i (v

+
i ) = 1 and ζ∗i (v

−
i ) = 0. Now, if the submodule K of L(a, b) is

proper, then its annihilator

AnnK := {ω ∈ L(a, b)∗ | ω(η) = 0 for all η ∈ K}

is a nonzero submodule of L(a, b)∗ which does not contain the vector ζ∗1 ⊗ · · · ⊗ ζ∗k . However, this

contradicts the claim proved in the first part of the proof because the strategy still works for the module

L(b1 +1,a1 − 1)⊗ · · · ⊗L(bk +1,ak − 1) with the previous assumptions on the complex numbers ai, bi.

In this case, instead of using 2a1 − 1 ̸= 0, we need the condition 2b1 + 1 ̸= 0. This is true if k ⩾ 2 as the

only possibility for bi = −1
2 is when i = k. As for the initial case k = 1, it can be checked by a direct

computation. □

Corollary 5.8. Suppose s = (s1, s2) and ε = (ε1, ε2) are such that s1 ̸= s2 and ε1 = ε2.

(1) If µ(u) satisfies (5.16), where P (u) and P (−u− s1) are relatively prime, then dimV (µ(u)) = 2k,

where k =
⌊degP (u)+1

2

⌋
.

(2) Given k ∈ Z>0, let ai, bi, 1 ⩽ i ⩽ k, be arbitrary complex numbers such that ai + bi ̸= 0 and set

P (u) =

k∏
i=1

(
(u+ s1ai)(u+ s1 + s1bi)

)
.

Then the Bs,ε-module obtained by the restriction of the Ys-module

L(a, b) = L(a1, b1)⊗ · · · ⊗ L(ak, bk)

is irreducible if and only if the greatest common divisor of P (u) and P (−u − s1) (over C) is of

degree at most 12.

2If the greatest common divisor is nontrivial, then it has to be u+ s1
2
.
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5.5. The case ε1 ̸= ε2. Now we assume that ε1 ̸= ε2. In this case, it is slightly different from the previous

case ε1 = ε2 as there is nontrivial one-dimensional module. We shall give detail for this part as well.

Suppose V (µ(u)) is finite dimensional, then by Proposition 5.3 we have

µ̃1(u)

µ̃2(u)
= (−1)degP (u)+1 P (u)

P (−u− s1)
. (5.19)

P-def2P-def2

We assume further that P (u) and P (−u − s1) are relatively prime. Otherwise, we may cancel common

factors and obtain a polynomial of smaller degree. Then P (− s1
2 ) ̸= 0. Suppose

P (u) = (u+ s1a1)(u+ s1a2) · · · (u+ s1al)

where l = degP (u) and ai ∈ C for 1 ⩽ i ⩽ l. We have ai ̸= 1
2 .

Set k = ⌊ l
2⌋. Introduce k pair of complex numbers (ai, bi), where ai are defined as above while bi are

defined as follows,

• if l is odd, then bi = ai+k − 1 for 1 ⩽ i ⩽ k;

• if l is even, then bi = ai+k − 1 for 1 ⩽ i < k and bk = −1
2 .

We also set γ = ε1s1(al − 1). Then we have

P (u)

P (−u− s1)
= (−1)degP (u)+1 ε1u+ s1ε1 + γ

ε2u+ γ

k∏
i=1

(u+ s1ai)(u+ s1 + s1bi)

(u− s1bi)(u+ s1 − s1ai)
. (5.20)

P-factor2P-factor2

The only possible cancellation is when l is even, then

u+ s1 + s1bk = u− s1bk.

Note that we have

ai + bi ̸= 0, ai + bj ̸= 0, ai + aj ̸= 1, bi + bj ̸= 1 (5.21)
notequalto2notequalto2

for all 1 ⩽ i ̸= j ⩽ k.

We consider the tensor product of evaluation Ys-modules,

L(a, b) = L(a1, b1)⊗ · · · ⊗ L(ak, bk)

and the tensor product

Vγ(a, b) = L(a, b)⊗ Cγ

Then Vγ(a, b) is a Bs,ε-module.

For each 1 ⩽ i ⩽ k, L(ai, bi) is two dimensional. We set v+i to be one of its nonzero singular vector

and v−i = e21v
+
i . Moreover, we assume that v+i are even. Suppose Cγ is spanned by v0. We also set

v+ = v+1 ⊗ · · · ⊗ v+k ⊗ v0.

Proposition 5.9. If ε = (ε1, ε2) satisfies ε1 ̸= ε2, then the Bs,ε-module Vγ(a, b) is irreducible. Moreover,

the finite-dimensional irreducible Bs,ε-module V (µ(u)) is almost isomorphic to Vγ(a, b).

Proof. It follows from the proof of Theorem 4.11 that the vector v+ is a highest ℓs,ε-weight vector. Suppose

the corresponding ℓs,ε-weight is ν(u) = (ν1(u), ν2(u)). Then it follows from Proposition 2.9, Proposition

4.13, and Lemma 5.4, that

ν̃1(u) = 2(ε1u+ s1ε1 + γ)

k∏
i=1

(u+ s1ai)(u+ s1 + s1bi)

(u+ s1 − s1ai)(u+ s1bi)
, ν̃2(u) = 2(ε2u+ γ)

k∏
i=1

u− s1bi
u+ s1bi

.

Therefore, by (5.16) and (5.17), we have

ν̃1(u)

ν̃2(u)
=
ε1u+ s1ε1 + γ

ε2u+ γ

k∏
i=1

(u+ s1ai)(u+ s1 + s1bi)

(u− s1bi)(u+ s1 − s1ai)

= (−1)degP (u)+1 P (u)

P (−u− s1)
=
µ̃1(u)

µ̃2(u)
.
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Thus, it suffices to prove that the Bs,ε-module Vγ(a, b) is irreducible.

We claim that any vector η ∈ Vγ(a, b) satisfying b12(u)η = 0 is proportional to v+. We prove the

claim by induction on k. The case k = 1 is prove by a direct computation using Lemma 5.4. Then we

assume that k ⩾ 2. We write any such nonzero vector η in the following form,

η =
1∑

r=0

(e21)
rv+1 ⊗ ηr = v+1 ⊗ η0 + v−1 ⊗ η1,

where η0, η1 ∈ L(a2, b2) ⊗ · · · ⊗ L(ak, bk) ⊗ Cγ . Similar to the proof of Proposition 5.7, the vector η1
must be proportional to v+2 ⊗ · · · ⊗ v+k . Then taking the coefficient of v+ in b12(u)η = 0, we have

0 =
u+ s1a1

u+ s1b1
v+1 ⊗ b12(u)η0 + t12(u)t

′
22(−u)v−1 ⊗ b22(u)η1 + t11(u)t

′
12(−u)v−1 ⊗ b11(u)η1.

Note that by (4.15) we have b̃11(u) = (2u+ s1)b11(u)− s1b22(u) and b̃22(u) = 2ub22(u). We deduce from

the above equation and Lemma 4.10 that

0 =
u+ s1a1

u+ s1b1
v+1 ⊗ b12(u)η0 +

2s1u(a1 + b1)(ε2u+ γ)

(u+ s1b1)(2u+ s1)(u− γ)

k∏
i=2

u− s1bi
u+ s1bi

v+1 ⊗ η1

+
2s1u(a1 + b1)(u+ s1a1)(ε1u+ s1ε1 + γ)

(u+ s1 − s1a1)(u+ s1b1)(2u+ s1)(u− γ)

k∏
i=2

(u+ s1ai)(u+ s1 + s1bi)

(u+ s1 − s1ai)(u+ s1bi)
v+1 ⊗ η1.

Multiplying both sides by (2u+ s1)(u− γ)
∏k

i=1

(
(u+ s1 − s1ai)(u+ s1bi)

)
, we have

0 = (u− γ)(2u+ s1)(u+ s1a1)(u+ s1 − s1a1)v
+
1 ⊗

k∏
i=2

(
(u+ s1 − s1ai)(u+ s1bi)

)
b12(u)η0

+ 2s1u(ε2u+ γ)(a1 + b1)(u+ s1 − s1a1)
k∏

i=2

(
(u+ s1 − s1ai)(u− s1bi)

)
v+1 ⊗ η1

+ 2s1u(ε1u+ s1ε1 + γ)(a1 + b1)(u+ s1a1)
k∏

i=2

(
(u+ s1ai)(u+ s1 + s1bi)

)
v+1 ⊗ η1.

The rest of the proof is parallel to that of Proposition 5.7. Again, we need the condition that the only

possible cancellation in the right hand side of (5.20) is when l is even, then u+ s1 + s1bk = u− s1bk. □

Corollary 5.10. Suppose s = (s1, s2) and ε = (ε1, ε2) are such that s1 ̸= s2 and ε1 ̸= ε2.

(1) If µ(u) satisfies (5.19), where P (u) and P (−u− s1) are relatively prime, then dimV (µ(u)) = 2k,

where k =
⌊degP (u)

2

⌋
.

(2) Given k ∈ Z>0, let γ,ai, bi, 1 ⩽ i ⩽ k, be arbitrary complex numbers such that ai + bi ̸= 0 and

set

P (u) = (u+ s1 + ε1γ)
k∏

i=1

(
(u+ s1ai)(u+ s1 + s1bi)

)
.

Then the Bs,ε-module

Vγ(a, b) = L(a1, b1)⊗ · · · ⊗ L(ak, bk)⊗ Cγ

is irreducible if and only if the greatest common divisor of P (u) and P (−u − s1) (over C) is of

degree at most 1.
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6. Classification in higher ranks
sec:classification

6.1. Sufficient conditions. We have the following sufficient condition for V (µ(u)) being finite-dimensional

for arbitrary s and arbitrary ε.
thm:suff

Theorem 6.1. Suppose the highest ℓs,ε-weight µ(u) satisfies

µ̃i(u)

µ̃i+1(u)
=

(2εiu− εiρi+1 +ϖi+1 + 2γ)λi(u)λi+1(−u+ ρi+1)

(2εi+1u− εi+1ρi+2 +ϖi+2 + 2γ)λi+1(u)λi(−u+ ρi+1)
, 1 ⩽ i < κ, (6.1)

eq:in-proof-01eq:in-proof-01

where γ ∈ C and λ(u) = (λi(u))1⩽i⩽κ is an ℓs-weight such that the Ys-module L(λ(u)) is finite-

dimensional, then V (µ(u)) is finite-dimensional.

Proof. Let λ(u) = (λi(u))1⩽i⩽κ be an ℓs-weight such that the Ys-module L(λ(u)) is finite-dimensional.

Suppose its highest ℓs-weight vector is ξ. Consider Bs,ε as a subalgebra as in Proposition 3.3. Let Cγ be

the one-dimensional Bs,ε-module spanned by ηγ as in Example 4.2. Then L(λ(u))⊗Cγ is a Bs,ε-module,

see Example 4.14.

It follows from Proposition 4.13 and Example 4.14 that ξ is a highest ℓs,ε-weight with ℓs,ε-weight ζ(u)

such that

ζ̃i(u)

ζ̃i+1(u)
=

(2εiu− εiρi+1 +ϖi+1 + 2γ)λi(u)λi+1(−u+ ρi+1)

(2εi+1u− εi+1ρi+2 +ϖi+2 + 2γ)λi+1(u)λi(−u+ ρi+1)
, 1 ⩽ i < κ. (6.2)

eq:in-proof-02eq:in-proof-02

Let M := Bs,ε(ξ ⊗ η). Then M is a highest ℓs,ε-weight with ℓs,ε-weight ζ(u). Moreover M is finite-

dimensional as a subspace of L(λ(u)).

Note that the series f(u) = µκ(u)/ζκ(u) ∈ 1 + u−1C[[u−1]] satisfies f(u)f(−u) = 1, see (4.22). Denote

by Mf(u) the Bs,ε-module obtained by pulling back M through the automorphism defined by bij(u) 7→
f(u)bij(u), for 1 ⩽ i, j,⩽ κ. Comparing (6.1) and (6.2), we see that Mf(u) is a highest ℓs,ε-weight with

ℓs,ε-weight µ(u). Therefore V (µ(u)) is finite-dimensional. □

It is very nature to expect that this is also the necessary condition for V (µ(u)) being finite-dimensional.
conj:main

Conjecture 6.2. If the irreducible Bs,ε-module V (µ(u)) is finite-dimensional, then there exist γ ∈ C and

an ℓs-weight λ(u) = (λi(u))1⩽i⩽κ such that

(1) the equations (6.1) hold, and

(2) the Ys-module L(λ(u)) is finite-dimensional.

We call ε simple if there exists at most one 1 ⩽ i < κ such that εi ̸= εi+1. Conjecture 6.2 is proved

in [MR02] for the case that ε is simple and n = 0 (non-super case). Our main results in this section are

to show the conjecture for (1) the case when n = 0, 1 and ε is arbitrary ; and (2) the case when s is the

standard parity sequence and ε is simple. The main obstacle for the super case is that when s is not the

standard parity sequence, an explicit criterion for the Ys-module L(λ(u)) being finite-dimensional is not

available, though a recursive criterion can be deduced from [Mol22,Lu22].
sec:reduct-lem

6.2. Reduction lemmas. In this subsection, we prepare reduction lemmas which allows us to construct

modules of twisted Yangians of lower ranks from modules of twisted Yangians of higher ranks.

For given s ∈ Sm|n and ε, define

s = (s2, s3, · · · , sκ), ε = (ε2, ε3, · · · , εκ),
s = (s1, s2, · · · , sκ−1), ε = (ε1, ε2, · · · , εκ−1).

(6.3)

Then we have twisted super Yangians Bs,ε and Bs,ε. To distinguish the underlying generating series, we

rewrite the series bij(u) as b
◦
ij(u) in Bs,ε or Bs,ε.

Let V be a representation of the twisted super Yangian Bs,ε. Define

V = {v ∈ V | b1i(u)v = 0, 1 < i ⩽ κ}. (6.4)
VoverVover
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lem:embedding-over

Lemma 6.3. The map Bs,ε → Bs,ε defined by b◦ij(u) → bi+1,j+1(u), 1 ⩽ i, j < κ, induces a representation

of Bs,ε on V .

Proof. This follows immediately from (3.3). □

Similarly, define

V = {v ∈ V | biκ(u)v = 0, 1 ⩽ i < κ}. (6.5)
VundVund

lem:embedding-under

Lemma 6.4 ([BR09, Theorem 3.1]). The map Bs,ε → Bs,ε defined by

b◦ij(u) → bij

(
u+

sκ
2

)
+ δij

sκ
2u
bκκ

(
u+

sκ
2

)
induces a representation of Bs,ε on V . □

Fix 1 ⩽ a < κ. Let

s⋆ = (sa, sa+1), s[a] = (s1, · · · , sa, sa+1),

ε⋆ = (εa, εa+1), ε[a] = (ε1, · · · , εa, εa+1).

For a Bs,ε-module V , define

V ⋆ = {η ∈ V | bij(u)η = 0, 1 ⩽ i < a, i < j ⩽ κ,
bkl(u)η = 0, a+ 1 < l ⩽ κ, 1 ⩽ k < l}.

(6.6)
vstarvstar

B2reduction

Lemma 6.5. The map

Bs⋆,ε⋆ → Bs,ε, b⋆ij(u) 7→ ba+i−1,a+j−1

(
u+

ρa+2

2

)
+
δij
2u

κ∑
k=a+2

skbkk

(
u+

ρa+2

2

)
induces a representation of Bs⋆,ε⋆ on V ⋆. Moreover, under this map, we have

b̃⋆ii(u) 7→ b̃a+i−1,a+i−1

(
u+

ρa+2

2

)
, i = 1, 2.

Proof. The first statement follows from repeatedly applying Lemma 6.3 and Lemma 6.4. The second one

is obvious. □

Note that if V is finite-dimensional, then, by Lemma 4.5, none of V , V , and V ⋆ is trivial.

6.3. Classification 1. Let σ ∈ Sκ. Given s and ε, define

sσ = (sσ−1(1), · · · , sσ−1(κ)), εσ = (εσ−1(1), · · · , εσ−1(κ)).

Then we have the following natural isomorphisms, which by abuse of notation we denote by σ again,

σ : Ys → Ysσ , tsij(u) 7→ ts
σ

σ(i)σ(j)(u), (6.7)
sigmaYsigmaY

and

σ : Bs,ε → Bsσ ,εσ , bsij(u) 7→ bs
σ

σ(i)σ(j)(u). (6.8)
sigmaBsigmaB

Note that the latter one is the same as the one obtained by the restriction of the former.

Fix 1 ⩽ a < κ, s, and ε, we shall denote

s̃ := sσ = (s1, · · · , sa+1, sa, · · · , sκ),
ε̃ := εσ = (ε1, · · · , εa+1, εa, · · · , εκ),

We shall identify the superalgebra Ys̃ with Ys via the isomorphism (6.7), Bs̃,ε̃ with Bs,ε via the isomor-

phism (6.8). When the underlying parity sequence and the sequence ε are omitted, we implicitly assume
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that we pick our fixed choice of s and ε. Then we can rephrase the conditions for a vector being a highest

ℓs̃-weight vector ζ of ℓs̃-weight ν(u) as follows,

tii(u)ζ = νi(u)ζ, taa(u)ζ = νa+1(u)ζ, ta+1,a+1(u)ζ = νa(u)ζ,

ti,i+1(u)ζ = ta−1,a+1(u)ζ = ta+1,a(u)ζ = ta,a+2(u)ζ = 0, i ̸= a− 1, a, a+ 1.

Recall that L(λ(u)) is the irreducible Ys-module of highest ℓs-weight λ(u). Suppose L(λ(u)) is finite-

dimensional and sa ̸= sa+1, then it follows from [Zha95] that λa(u)/λa+1(u) is a series in u−1 as a rational

function expanded at u = ∞. Let

λa(u)

λa+1(u)
=

p(u)

q(u)
, (6.9)

pqdefpqdef

where p(u) and q(u) are relatively prime monic polynomials in u of the same degree. Set

degq(u) = k. (6.10)
mcqdegmcqdeg

We also need the following
lem:ell-weight-ref

Lemma 6.6. Suppose L(λ(u)) is finite-dimensional, then L(λ(u)) contains a unique highest ℓs̃-weight

vector (up to proportionality) of ν(u), where ν(u) is given by the following rules,

(1) if sa = sa+1, then ν(u) = λ(u);

(2) if sa ̸= sa+1, then νi(u) = λi(u) for i ̸= a, a+ 1 and

νa(u) = λa+1(u)
q(u− sa)

q(u)
, νa+1(u) = λa(u)

p(u− sa)

p(u)
.

Proof. Case (1) is probably well known3 and case (2) follows from the odd reflections of super Yangians,

see [Mol22,Lu22]. □
thm:reflection

Theorem 6.7. If Conjecture 6.2 holds true for the case ε, then it also holds true for the case εσ for any

σ ∈ Sκ.

Proof. It suffices to prove it for the case σ = σa = (a, a + 1) for any fix 1 ⩽ a < κ. We shall use the

notations introduced above. Since there is a single choice of s, we shall drop the dependence on s for the

notations. Also, to distinguish ℓs and ℓs̃, we use the notation ℓ and ℓ̃ instead, respectively4.

Let µ(u) be a highest ℓε̃-weight. Suppose the irreducible Bε̃-module V (µ(u)) is finite-dimensional.

Since Bε̃ and Bε are isomorphic, the Bε̃-module V (µ(u)) is also a finite-dimensional irreducible Bε-

module. Suppose the highest ℓε-weight of V (µ(u)) is ν(u), that is the Bε̃-module V (µ(u)) is almost

isomorphic to the Bε-module V (ν(u)) if we identify Bε̃ with Bε. By assumption, Conjecture 6.2 is true

for the case ε, therefore, there exists a highest ℓ-weight λ(u) and γ ∈ C such that (6.1) are satisfied and

the Y-module L(λ(u)) is finite-dimensional too. Note that the choice of λ(u) may not be unique. We

shall pick a particular λ(u) and sketch the proof (a complete proof will be added in a later version).

We pick λ(u) such that the finite-dimensional irreducible Y(gl2)-module L(λa(u), λa+1(u)) tensor with

the one-dimensional module Cγ restricts to an irreducible B2-module, see Proposition 5.2. Then the

highest ℓ̃-weight vector corresponds to the lowest ℓ-weight vector in the Y(gl2)-module L(λa(u), λa+1(u))

(since such a vector is unique as it is “highest weight” in terms of the usual weight) and hence this

vector corresponds to a highest ℓε̃-weight vector. However, the corresponding ℓ-weight does not change

by Lemma 6.6. Hence to compute the ℓε̃-weight, one only needs to change ε to ε̃. □

3It essentially reduces to the case of Y(gl2) where all finite-dimensional irreducible modules are almost isomorphic to

tensor product of evaluation modules.
4Though s = s̃, the ℓs-weight and ℓs̃-weight have slightly different meaning.
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6.4. Classification 2.
thm:main-super-class

Theorem 6.8. Suppose s is the standard parity sequence and ε is simple. The Bs,ε module V (µ(u)) is

finite-dimensional if and only if there exists γ ∈ C and for any 1 ⩽ i < κ such that

(1) if si = si+1, there exists a monic polynomial Pi(u) satisfying Pi(u) = Pi(−u+ ρi),

µ̃i(u)

µ̃i+1(u)
=

(2εiu− εiρi+1 +ϖi+1 + γ)Pi(u+ si)

(2εi+1u− εi+1ρi+2 +ϖi+2 + γ)Pi(u)
. (6.11)

eq:gamma-thmeq:gamma-thm

Moreover, if εi ̸= εi+1, then Pi(u) is not divisible by 2εiu− εiρi+1 +ϖi+1 + γ.

(2) if si ̸= si+1, there exists a monic polynomials Pi(u) satisfying

µ̃i(u)

µ̃i+1(u)
= εiεi+1(−1)degPi

Pi(u)

Pi(−u+ ρi+1)
.

Proof. By Theorem 6.1, it suffices to prove the “only if” part. Let V = V (µ(u)) and assume that V is

finite-dimensional. We proceed by induction on n. For the base case n = 2, it follows from Propositions

5.1 and 5.2. Then we assume that n ⩾ 3.

Recall the notation from §6.2 and set ξ to be the highest ℓs,ε-weight vector. Consider the subspace

V defined in (6.4), then V is a finite-dimensional Bs,ε-module by Lemma 6.3. Clearly, ξ ∈ V and ξ is

a highest ℓs,ε-weight vector of the ℓs,ε-weight µ(u) = (µ2(u), · · · , µκ(u)). Thus the cyclic span Bs,εξ is

a finite-dimensional highest ℓs,ε-weight with highest ℓs,ε-weight µ(u). In particular, V (µ(u)) is finite-

dimensional. By induction hypothesis, we conclude that the conditions from the theorem are satisfied for

the components of µ(u) (that is for 1 < i < κ) for some γ1 ∈ C.
Similarly, consider the subspace V defined in (6.5), then V is a finite-dimensional Bs,ε-module by

Lemma 6.4. Clearly, ξ ∈ V and ξ is a highest ℓs,ε-weight vector with the ℓs,ε-weight

µ◦(u) =
(
µ1

(
u+

sκ
2

)
+
sκ
2u
µκ

(
u+

sκ
2

)
, · · · , µκ−1

(
u+

sκ
2

)
+
sκ
2u
µκ

(
u+

sκ
2

))
.

Let µ̃◦i (u) be the series associated to µ◦(u) as defined in (4.24). Then it is clear that

µ̃◦i (u) = µ̃i

(
u+

sκ
2

)
.

By the same argument as in the previous paragraph, we conclude that the conditions from the theorem

are satisfied for 1 ⩽ i < κ − 1 for some γ2 ∈ C.
Now it suffices to show that we can choose γ1 = γ2. Recall from (4.25) that if εi = εi+1, for 1 ⩽ i < κ,

then

2εiu− εiρi+1 +ϖi+1 = 2εi+1u− εi+1ρi+2 +ϖi+2.

Hence the number γ only shows up in (6.11) when εi ̸= εi+1 and si = si+1. By Proposition 5.1, the

pair (Pi(u), γ) satisfying (6.11) is unique in this case. Since ε is simple, there is at most one i such that

εi ̸= εi+1. Therefore, we can always make sure that γ1 = γ2, completing the proof of the theorem. □

Corollary 6.9. Conjecture 6.2 holds when s is the standard parity sequence and ε is simple.

Proof. This follows immediately from Theorem 6.8, Theorem 2.4, and equation (4.26). □

Theorem 6.10. Conjecture 6.2 holds for arbitrary ε when s is the standard parity sequence and n = 1.

Proof. The proof is similar to that of Theorem 6.8 by induction and Theorem 6.8. Again the point is to

argue that γ1 and γ2 are related by specific rule provided the assumptions hold. □
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7. Drinfeld functor and dAHA of type BC
sec:schur-weyl

7.1. Degenerate affine Hecke algebras. Let l be a positive integer. Following [CGM14], we first recall

basics about degenerate affine Hecke algebras (dAHA for short) of types Al and BCl.

Denote by Sl the symmetric group on l elements and set Z2 = Z/2Z. Then the wreath product

Wl = Z2 ≀ Sl is the Weyl group of type BCl. Let e1, · · · , el be the standard basis of Rl, then the

non-reduced root system of type BCl consists of the following set of vectors,

{±ei + ej , ±ei − ej | 1 ⩽ i ̸= j ⩽ l} ∪ {±ei, ±2ei | 1 ⩽ i ⩽ l}.

For 1 ⩽ i ̸= j ⩽ j, let σij , ςi be the reflections about the root vectors ei − ej and ei, respectively. Set

σi = σi,i+1 for 1 ⩽ i < l.

Definition 7.1. For ϑ1 ∈ C and l ∈ Z>0, the dAHA Hl
ϑ1

of type Al is the associative algebra generated

by the group algebra C[Sl] and y1, · · · , yl with the relations yiyj = yjyi, 1 ⩽ i, j ⩽ l, and

σiyi − yi+1σi = ϑ1, 1 ⩽ i < l,

σiyj = yjσi, j ̸= i, i+ 1.
def:dAHA-B

Definition 7.2. For ϑ1, ϑ2 ∈ C and l ∈ Z>0, the dAHA Hl
ϑ1,ϑ2

of type BCl is the associative algebra

generated by the group algebra C[Wl] and y1, · · · , yl with the relations yiyj = yjyi, 1 ⩽ i, j ⩽ l, and

σiyi − yi+1σi = ϑ1, ςlyi = yiςl, 1 ⩽ i < l,

ςlyl + ylςl = ϑ2, σiyj = yjσi, j ̸= i, i+ 1.

The following lemmas are well known, see e.g. [CGM14, Section 2].

Lemma 7.3. The subalgebra of Hl
ϑ1,ϑ2

generated by yi, 1 ⩽ i ⩽ l, and C[Sl] is isomorphic to the dAHA

Hl
ϑ1

of type Al. □

One has the following natural embeddings,

ı1 : H
l1
ϑ1
↪→ Hl

ϑ1,ϑ2
, yi 7→ yi, σj 7→ σj , 1 ⩽ l1 ⩽ l,

ı2 : H
l2
ϑ1,ϑ2

↪→ Hl
ϑ1,ϑ2

, yi 7→ yi+l−l2 , ςi 7→ ςi+l−l2 , σj 7→ σj+l−l2 , 1 ⩽ l2 ⩽ l,

ı1 ⊗ ı2 : H
l1
ϑ1

⊗Hl2
ϑ1,ϑ2

↪→ Hl
ϑ1,ϑ2

, l1 + l2 ⩽ l. (7.1)
eq:embedding-heckeeq:embedding-hecke

Note that due to the relation [ςi, yj ] = ϑ1σij(ςi − ςj) for i < j, the last embedding ı1 ⊗ ı2 does not extend

to an embedding Hl1
ϑ1,ϑ2

⊗Hl2
ϑ1,ϑ2

↪→ Hl
ϑ1,ϑ2

.
lem:dAHA-B-other

Lemma 7.4 ([EFM09, Lemma 3.1]). The algebra Hl
ϑ1,ϑ2

is isomorphic to the algebra generated by ele-

ments yi, 1 ⩽ i ⩽ l, and by C[W] with the relations,

σiyi = yi+1σi, σiyj = yjσi, j ̸= i, i+ 1,

ςlyl = −ylςl, ςlyi = yiςl, i ̸= l,

[yi, yj ] =
ϑ1ϑ2
2

σij(ςj − ςi) +
ϑ21
4

l∑
k=1
k ̸=i,j

(
(σjkσik − σikσjk)

+ σikσjk(ςiςj − ςiςk + ςjςk)− σjkσik(ςiςj + ςiςk − ςjςk)
)
.

Moreover, this presentation is related to the one in Definition 7.2 by

yi = yi −
ϑ2
2
ςi +

ϑ1
2

i−1∑
k=1

σik −
ϑ1
2

l∑
k=i+1

σik −
ϑ1
2

l∑
k=1
k ̸=i

σikςiςk. □
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Lemma 7.5 ([Lus89, 3.12]). The center of the dAHA Hl
ϑ1,ϑ2

(resp. Hl
ϑ1
) is generated by the Sl-symmetric

polynomials in y21, · · · , y2l (resp. y1, · · · , yl). □

7.2. Drinfeld functor for super Yangian. The symmetric group Sl acts naturally on V ⊗l, where the

operator σij for i < j acts as

P(i,j) =
κ∑

a,b=1

sbE
(i)
ab E

(j)
ba ∈ End(V ⊗l). (7.2)

eq permeq perm

Here we use the standard notation

E
(k)
ij = 1⊗(k−1) ⊗ Eij ⊗ 1⊗(l−k) ∈ End(V ⊗l), 1 ⩽ k ⩽ l.

Set

Q(k) =
κ∑

i,j=1

(−1)|i||j|+|i|+|j|E
(k)
ij ⊗ Eij ∈ End(V ⊗l)⊗ End(V ), 1 ⩽ k ⩽ l.

Let ε = ±1. Let M be any Hl
ϑ1
-module. Set

Ds(M) =M ⊗ V ⊗l, Dε
s(M) = Ds(M)/

l−1∑
i=1

(Imσi − ε),

where the symmetric group acts on Ds(M) by the diagonal action, namely σi acts on M ⊗ V ⊗l as

σi ⊗P(i,i+1) for 1 ⩽ i < l.

For χ, c ∈ C, define

Tχ(u) = T
χ
1 (u) · · ·Tχ

l (u) ∈ Hl
ϑ1
[[u−1]]⊗ End(V ⊗l)⊗ End(V ),

where

T
χ
k (u) = 1 +

1

u− χyk + c
⊗ Q(k), 1 ⩽ k ⩽ l.

Then the map T (u) 7→ Tχ(u) induces an action of Ys on Ds(M).

The following statement for the Yangian Y(glN ) case is well known, see [Ara99, Proposition 2] and

[Dri86, Theorem 1].
lem:D-functor-A

Lemma 7.6 ([LM21, Lemma 4.2]). Suppose ϑ1 ̸= 0 and ϑ1χ = ε. Let M be any Hl
ϑ1
-module. Then the

map T (u) 7→ Tχ(u) induces an action of Ys on Dε
s(M).

Therefore, one has a functor Dε
s from the category of Hl

ϑ1
-modules to the category of Ys-modules. We

call the functor Dε
s the Drinfeld functor. For Schur-Weyl type dualities for superalgebras of type A, see

[Ser84,BR87,Moo03,Mit06,Fli20,LM21,Lu21,KL22,Lu23,She22,Jan23] for more details.

7.3. Drinfeld functor for twisted super Yangian. We need the following
lem:embedding

Lemma 7.7. For any γ ∈ C, the mapping

φ : B(u) → T (u)(Gε + γu−1)T−1(−u) (7.3)
eq:emd-b-neweq:emd-b-new

defines a superalgebra homomorphism from the twisted Yangian Bs,ε to the super Yangian Ys.

Proof. In the same way as Proposition 3.3, it suffices to show that the matrix Gε + γu−1 satisfies the

reflection equation (3.2) which it is known in [AAC+04,RS07,BR09]. □

For brevity, we set

Gε,γ(u) = Gε + γu−1, ȷ =
m− n

2
.

Consider the following elements in Hl
ϑ1,ϑ2

[[u−1]]⊗ End(V ⊗l)⊗ End(V ),

T
χ
k (u) = 1 +

1

u− ȷ− χyk
⊗ Q(k), S

χ
k (u) = 1− 1

u+ ȷ− χyk
⊗ Q(k),
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for 1 ⩽ k ⩽ l. By the identity Q(k) · Q(k) = 2ȷQ(k), we have

T
χ
k (u)Sχ

k (u) = 1. (7.4)
eq:t-times=seq:t-times=s

Set

Bχ(u) = T
χ
1 (u) · · ·Tχ

l (u)Gε,γ(u)Sχ
l (−u) · · ·S

χ
1 (−u) (7.5)

eq:B-chieq:B-chi

as an element in Hl
ϑ1,ϑ2

[[u−1]]⊗ End(V ⊗l)⊗ End(V ). Here Gε,γ(u) stands for 1⊗ 1⊗Gε,γ(u).

Given any Hl
ϑ1,ϑ2

-module M , we can regard it as an Hl
ϑ1
-module and we have the Ys-module Dε

s(M)

if ϑ1χ = ε, by Lemma 7.6. Moreover, the action of Ys on Dε
s(M) is given by

T (u) 7→ T
χ
1 (u) · · ·Tχ

l (u).

Hence it follows from Lemma 7.7 and (7.4) that B(u) 7→ Bχ(u) induces an action of Bs,ε on Dε
s(M).

The Sl-action on V ⊗l can be extended to Wl by setting the action of ςk on V ⊗l by multiplication on

the k-th factor by the matrix Gε. We also write this operator as Gε
k. For an Hl

ϑ1,ϑ2
-module M , the group

Wl acts on M ⊗ V ⊗l by the diagonal action. We further set

Dε
s,ε(M) = Dε

s(M)/(Im ςl − ε).

We shall need the following lemma. Recall that ϖ1 =
∑κ

a=1 saεa and 2ȷ =
∑κ

a=1 sa. Set

Qk
k =

∑
i,j:εi=εj

(−1)|i||j|+|i|+|j|E
(k)
ij ⊗ Eij ,

Q
p
k = Q(k) − Qk

k =
∑

i,j:εi ̸=εj

(−1)|i||j|+|i|+|j|E
(k)
ij ⊗ Eij .

lem:cgm-thm4.5

Lemma 7.8. We have

Qk
kQ

p
k + Q

p
kQ

k
k = 2ȷQp

k,

Gε(Qk
kQ

p
k − Q

p
kQ

k
k) = ϖ1Q

p
k.

Proof. The formulas follow from a direct computation. □

The following are the main results of this section.
prop:Drinfeld-functor-BC

Proposition 7.9. Let M be any Hl
ϑ1,ϑ2

-module. If ϑ2 = ϑ1(2γ + ϖ1) and ϑ1χ = ε, then the map

B(u) 7→ Bχ(u) defines a representation of the twisted super Yangian Bs,ε on the space Dε
s,ε(M).

Proof. The proof is similar to that of [CGM14, Theorem 4.5] by using Lemma 7.8. □

Therefore, one has a functor Dε
s,ε from the category of Hl

ϑ1,ϑ2
-modules to the category of Bs,ε-modules.

Again, we call the functor Dε
s,ε the Drinfeld functor.

Let l, l1, l2 ∈ Z⩾0 such that l = l1 + l2. Let M1 be an Hl1
ϑ1
-module, M2 an Hl2

ϑ1,ϑ2
-module. Set

M1 ⊙M2 = Hl
ϑ1,ϑ2

⊗
H

l1
ϑ1

⊗H
l2
ϑ1,ϑ2

(M1 ⊗M2),

see (7.1). Then M1 ⊙M2 is an Hl
ϑ1,ϑ2

-module and hence Dε
s,e(M1 ⊙M2) is Bs,ε-module.

Note that Dε
s(M1) is a Ys-module and Dε

s,ε(M2) is a Bs,ε-module, thus Dε
s(M1) ⊗ Dε

s,ε(M2) is a

Bs,ε-module induced by the coproduct in Proposition 3.5.
prop:DF-coproduct

Proposition 7.10. As Bs,ε-modules, we have Dε
s,ε(M1 ⊙M2) ∼= Dε

s(M1)⊗ Dε
s,ε(M2).

Proof. The proof is parallel to that of [CGM14, Porposition 4.6]. □

We say that a Bs,ε-module is of level l if it decomposes as direct sums of submodules over k of V ⊗l as

a k-module.
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thm:Drinfeld-B

Theorem 7.11. Let ϑ1, ϑ2, χ, γ be as in Proposition 7.9 and p = #{i | εi = 1, 1 ⩽ i ⩽ κ}. If max{p,m+

n−p} < l, then the Drinfeld functor Dε
s,ε provides an equivalence between the category of finite-dimensional

Hl
ϑ1,ϑ2

-modules and the category of finite-dimensional Bs,ε-modules of level l.

We prove the theorem in Section 7.4.
thm:Drinfeld-simple

Theorem 7.12. Let ϑ1, ϑ2, χ, γ be as in Proposition 7.9. Let M be an irreducible Hl
ϑ1,ϑ2

-module. Then

Dε
s,ε(M) is either 0 or an irreducible Bs,ε-module.

The theorem is analogous to [Ara99, Theorem 11] for Yangian Y(glN ), [Naz99, Theorem 5.5] for super

Yangian of type QN , [LM21, Proposition 4.8] for super Yangian Ys and [CGM14, Theorem 4.7] for twisted

Yangian of type AIII. The proof is similar to that of [CGM14, Theorem 4.7] with suitable modifications

for super case as presented in the proofs of [Naz99, Theorem 5.5] and [LM21, Proposition 4.8]. Therefore,

we shall not provide the details.

app:B

7.4. Proof of Theorem 7.11. In this section, we give a proof of Theorem 7.11. The strategy is essentially

the same as in [CGM14].

Recall that the action of Bs,ε on Dε
s,ε(M) is induced by the map B(u) 7→ Bχ(u), see (7.5). Expanding

Bχ(u) as a series in u−1 with coefficients in Hl
ϑ1,ϑ2

⊗ End(V ⊗l)⊗ End(V ), we find the first 3 coefficients

are given by Gε (understood as 1⊗ 1⊗Gε),

γ + 1⊗
l∑

k=1

(
Q(k)Gε +GεQ(k)

)
,

2γ
(
1⊗

l∑
k=1

Q(k)
)
+

∑
1⩽k<r⩽l

(1⊗ Q(k)Q(r))Gε +
∑

1⩽r<k⩽l

Gε(1⊗ Q(k)Q(r))

+
(
1⊗

l∑
k=1

Q(k)
)
Gε

(
1⊗

l∑
r=1

Q(r)
)
+

l∑
k=1

(
Gε

(
(ȷ− χyk)⊗ Q(k)

)
+
(
(ȷ+ χyk)⊗ Q(k)

)
Gε

)
.

(7.6)
eq:B-matrix-2ndeq:B-matrix-2nd

We set

Bχ(u) =
∑

r∈Z⩾0

κ∑
i,j=1

b
(r)
ij u

−r ⊗ Eij ,

where b
(r)
ij ∈ Hl

ϑ1,ϑ2
⊗ End(V ⊗l). From above, we conclude that

b
(0)
ij = εiδij , b

(1)
ij = γδij + si(εi + εj)

l∑
k=1

1⊗ E
(k)
ij .

Before computing b
(2)
ij , we prepare the following lemma.

lem:drinfeld-cal

Lemma 7.13. Suppose εi ̸= εj. Then as operators on V ⊗l, we have

si

l∑
k=1

( k−1∑
r=1

σrk −
l∑

r=k+1

σrk

)
E

(k)
ij = −εi

( ∑
1⩽k<r⩽l

Q(k)Q(r)Gε +
∑

1⩽r<k⩽l

GεQ(k)Q(r)
)
ij
, (7.7)

eq:lem-bij2-1eq:lem-bij2-1

si

l∑
k=1

(∑
r=1
r ̸=k

σkrςrςk +ϖ1ςk

)
E

(k)
ij = εi

( l∑
k,r=1

Q(k)GεQ(r)
)
ij
. (7.8)

eq:lembij2-2eq:lembij2-2
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Here by (·)ij, we mean the (i, j)-th entry, namely, for G ∈ End(V ⊗l)⊗ End(V ),

G =
κ∑

i,j=1

(−1)|i||j|+|j|(G)ij ⊗ Eij .

Proof. Recall from (7.2) that σrk = P(r,k) =
∑κ

a,b=1 sbE
(r)
ab E

(k)
ba , therefore the left hand of (7.7) is equal

to ∑
r<k

κ∑
a=1

sisaE
(r)
ia E

(k)
aj −

∑
k<r

κ∑
a=1

sisaE
(r)
ia E

(k)
aj .

A straightforward computation implies∑
1⩽k<r⩽l

Q(k)Q(r)Gε+
∑

1⩽r<k⩽l

GεQ(k)Q(r)

=
κ∑

i,j,a=1

(∑
r<k

εi +
∑
k<r

εj

)
E

(k)
ia E

(s)
aj ⊗ Eij(−1)|i||j|+|i|+|j|+|a|.

After interchanging k and r and using εj = −εi, one obtains (7.7).

Similarly, the left hand side of (7.8) is equal to

l∑
k,r=1
r ̸=k

κ∑
a=1

sisaεaεiE
(r)
ia E

(k)
aj +ϖ1

l∑
k=1

siεiE
(k)
ij ,

while we also have
l∑

k,r=1

Q(k)GεQ(r) =
∑
k,r=1
r ̸=k

κ∑
i,j,a=1

εaE
(k)
ia E

(r)
aj ⊗ Eij(−1)|i||j|+|i|+|j|+|a|

+
l∑

k=1

κ∑
i,j,a=1

εaE
(k)
ij ⊗ Eij(−1)|i||j|+|i|+|j|+|a|.

Now (7.8) follows from ϖ1 =
∑κ

a=1 saεa =
∑κ

a=1(−1)|a|εa. □

Note that

GεQ(k) + Q(k)Gε =
κ∑

i,j=1

(εi + εj)Q
(k). (7.9)

eq:lembij2-3eq:lembij2-3

It follows from (7.6), (7.9), and Lemma 7.13 that if εi ̸= εj , then

sib
(2)
ij = 2γ

l∑
k=1

E
(k)
ij − εiε

l∑
k=1

( k−1∑
r=1

σrk −
l∑

r=k+1

σrk

)
⊗ E

(k)
ij

+ εiε
∑
k=1

( l∑
r=1
r ̸=k

σkrςrςk +ϖ1ςk

)
⊗ E

(k)
ij − 2χεi

l∑
k=1

yk ⊗ E
(k)
ij

= −2εi

l∑
k=1

(
χyk +

ε

2

k−1∑
r=1

σrk −
ε

2

l∑
r=k+1

σrk −
ε

2

l∑
r=1
r ̸=k

σkrςrςk −
ε

2

(
ϖ1 + 2γ

)
ςk

)
⊗ E

(k)
ij .

Therefore, if we suppose further that ϑ2 = ϑ1(2γ +ϖ1) and ε = ϑ1χ, we have

siεϑ1b
(2)
ij = −2εi

l∑
k=1

yk ⊗ E
(k)
ij ,
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see Lemma 7.4 and cf. [CGM14, Equation (4.1)].

The rest of the proof is similar to the one that is outlined in [CGM14, proof of Theorem 4.3]. We

shall omit the details. The J̃(Eij) there should be replaced by b
(2)
ij as the J-presentations of (twisted)

super Yangians are not discussed here. The fact that the tensor space V ⊗l decomposes as a direct sum of

irreducible modules over k×Wl follows from the proof of [She22, Theorem 5.8]. A precise decomposition

parallel to the one discussed in [ATY95, Introduction] (namely one only needs to change Wλ to the k-

module associated to the tuple λ) can be deduced from a standard approach as in [CW12, Theorem 3.11]

or [ATY95], see also [Ker71, Chapter II]. This decomposition and the condition max{p,κ − p} < l make

sure that Dε
s,ε(M) is nonzero if M is nonzero.
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